
Axial Piston Variable Pump A4VG

RE 92003/03.09 Replaces: 09.07

1/64

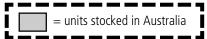
Data sheet

Series 32 Sizes 28...250 Nominal pressure 400 bar Peak pressure 450 bar Closed circuit

Contents

Ordering Code / Standard Program	2
Technical Data	5
High-Pressure Relief Valves	9
Pressure Cut-Off, D	10
NV - Version Without Control Unit	11
DG - Hydraulic Control, Direct Operated	11
EZ - Electric Two-Point Control, With Switching Solenoid	11
HD - Hydraulic Control, Pilot-Pressure Related	12
HW - Hydraulic Control, Mechanical Servo	13
EP - Electric Control, With Proportional Solenoid	14
DA - Hydraulic Control, Speed Related	16
Unit Dimensions, Size 28	18
Unit Dimensions, Size 40	22
Unit Dimensions, Size 56	26
Unit Dimensions, Size 71	30
Unit Dimensions, Size 90	34
Unit Dimensions, Size 125	38
Unit Dimensions, Size 180	42
Unit Dimensions, Size 250	46
Through Drive Dimensions	50
Overview of Attachments on A4VG	53
Combination Pumps A4VG + A4VG	53
Mechanical Stroke Limiter, M	54
Ports X ₃ and X ₄ for Positioning Pressure, T	54
Filtration Types	55
Swivel Angle Indicator	59
Connector for Solenoids (Only for EP, EZ, DA)	60
Rotary Inch Valve	61
Installation Situation for Coupling Assembly	62
Installation Notes	63
General Notes	64

Features


- Variable axial piston pump of swashplate design for hydrostatic closed circuit transmissions
- Flow is proportional to drive speed and displacement and is infinitely variable
- Output flow increases with the swivel angle of the swashplate from 0 to its maximum value
- Flow direction changes smoothly when the swashplate is moved through the neutral position
- A wide range of highly adaptable control devices is available for different control and regulating functions
- The pump is equipped with two pressure-relief valves on the high pressure ports to protect the hydrostatic transmission (pump and motor) from overload
- The high-pressure relief valves also function as boost valves
- The integrated boost pump acts as a feed and control oil pump
- The maximum boost pressure is limited by a built-in boost pressure relief valve
- The integral pressure cut-off is standard

Ordering Code / Standard Program

With DA control valve, fixed setting and ports for pilot control device

With DA control valve, fixed setting and hydraulic inch

valve mounted, control with mineral oil

						1	ı		,				A.		1	1	П			$\neg \vdash$	1	\neg
	IV G			D					/	32		_	N									
0	1 02	03	04	05	06	07	08	09		10	11		12	13	14	15	16	17	18	19 2	0 2	1 2
	A																					
	Axial pis				:				400	h			1	E0 b								Λ.4
1	Variable	Swas	snpiai	e des	ign, r	IOIIIIII	ai pre	ssure	400	bar, p	реак р	ressu	ire 4	30 b	ar							A4
	Operatio																					
2	Pump in	clos	ed cir	cuit																		G
	Size																					
3	≈ Displa	ceme	ent V _g	_{max} in	cm ³									28	40	56	71	90	125	180	250	
	Control o	dovid												28	40		71	- 00	105	100	250	•
	Without			i+										<u>28</u> ●	40	56 ●	71 ●	90	125	180	250	N
	Hydrauli					nilot-r	racci	ıra ral	atad	with c	supply	filtrati	on									HE
	пушаш	C COI	ilioi		-	•				WILLIE	supply	IIIIIaii	OII	•								Н١
		mechanical servo direct operated															D					
	speed related (Description U = 12 V DO					C	•	•	•	•	•	•	•	•	DA							
4	speed related (Description DA control valve in Pos. 09)			24 V	_	•	•	•	•	•	•	•	•	D/								
İ	Electric	contr	rol			with n	ropor	tional	مامو	noid		12 V I	_	•	•	•	•	•	•	•	•	EF
								filtrati		iioia		24 V		•	•	•	•	•	•	•	•	EF
		with switching solo								id		12 V I	_	•	•	•	•	•	•	•	•	EZ
								Ü				24 V	-+	•	•	•	•	•	•	•	•	ΕZ
_	D													20	40			-00	405	100	250	
	Pressure			off (o	tondo	۳۹/								28	40	56	71	90	125	180	250	
5	With pre	essur	e cut-	on (s	tanda	ira)																
_	Neutral p	osit	ion s	witch	(onl	y for l	HW)							28	40	56	71	90	125	180	250	
6	Without													•	•	•	•	•	•	•	•	
	With neu	utral	positio	on sw	itch (with [DEUT	SCH	conn	ector)			•	•	•	•	•	•	•	•	L
	Mechani	cal s	troke	limit	er									28	40	56	71	90	125	180	250	
	Without	mec	hanica	al stro	ke lin	niter (witho	ut cod	de)					•	•	•	•	•	•	•	•	
7	With me	chan	ical st	roke	limite	r, exte	ernal v	/ariab	е					•	•	•	•	•	•	•	•	N
	Dowle V	v .		_:L:	.!									28	40	EC	74	00	105	100	050	
	Ports X ₃ , Without													20	40	56	71	90	125	180	250	
8	With por	•		14 (VV)	inout	COUC	· /							•				•				T
	With poi	10 /	31 74																			
_	DA contr														NV	HD1	HW	DG	DA	EP	EZ	
	Without														•	•	•	•	_	•	•	1
	With DA														-	•	•	•	•	•	_	2
	With DA														-	•	•	•	•	•	_	31
	adjustab										erclo	ckwise	9		-	•	•	•	•	•	-	31
9	With DA control valve, fixed setting and hydraulic inch valve mounted, control with brake fluid						_	-	_	-	•	-	-	4								
ł	\A/:4b D A								. 11 . 4		Later de											<u> </u>

Ordering Code / Standard Program

Δ	4V	/ G			D					/	32		_	N									
С)1	02	03	04	05	06	07	08	09	_	10	11		12	13	14	15	16	17	18	19 2	20 2	1 22
	Se	ries																					
10	Se	eries 3,	Inde	x 2																			32
	Dir	rection	of ro	tatio	n																		
	_	ewed fr												-	lock	wise							R
11														-	ount	erclo	ckwise						L
	Sea	als																					
		BR (niti	ile-ca	aouto	houc), sha	ıft sea	al ring	in FK	M (fl	uor-ca	aoutcl	houc)										N
		aft end olined s			ible ir			see gle p		8)					28	40	56 ●	71 •	90	125	180	250	Z
		180	IIaII	DIN		_				numn	- 1st	numr	`		_ 1)			•			– 1)	– 1)	A
13	Sr	olined s	haft					gle p		Jump	151	puni	,		•	•		•			•	•	S
		ANSI B92.1a-1976				-		<u> </u>		numr	- 1st	numr	<u> </u>		- 2)	- ²)	•	•	– ²)		•		T
		only for con									<u> </u>			_		_	_	,	_	_	_	U	
							, <u>,</u>				, up		P 4P									l	
		unting													28	40	56	71	90	125	180	250	
	_	AE J744													•	•	•	-	-	-	_	_	С
14		AE J744													-	-	-	-	-	-	•	•	D
	SF	4E J744	- 2	+4-b	OIT										-	-	_				-	-	F
	Se	rvice li	ne p	orts	(metri	c fixir	ng thr	ead)											28	40	.180	250	
		ΑΕ flanç								su	ction p	oort S	6 botte	om					_	(-	02
15	A/	B top a	ınd b	ottor	n						ction p								_)	_	03
		ΑΕ flanç				r	ight			su	ction p	oort S	6 botte	om					•		_	•	10
	Α/	B same	e side	е		ļ	eft			su	ction p	oort S	at to	р					О		_	0	13
	Во	ost pu	mp												28	40	56	71	90	125	180	250	
		ithout i		ated	boos	t pun	np			wi	thout t	:hrou	gh dri	/е	•	•	•	•	•	•	•	•	NOO
16							wi	th thro	ugh o	drive		•	•	•	•	•	•	•	•	K			
16	W	With integrated boost pump				wi	thout t	hrouç	gh dri	<i>/</i> e	•	•	•	•	•	•	•	•	F00				
										wi	th thro	ugh d	drive		•	•	•	•	•	•	•	•	F

Through drive	(mounting options	see nage 53)

	inrough arive (mounting of	otions, see	page 53)										
	Flange SAE J744 ³)	Hub for s	plined shaft		28	40	56	71	90	125	180	250	
	82-2 (A)	5/8 in	9T 16/32DP	4)	•	•	•	•	•	•	•	•	.01
	101-2 (B)	7/8 in	13T 16/32DP	4)	•	•	•	•	•	•	•	•	.02
		1 in	15T 16/32DP	4)	•	•	•	•	•	•	•	•	.04
17	127-2 (C)	1 in	15T 16/32DP	4)	-	•	_	_	-	_	_	-	.09
		1 1/4 in	14T 12/24DP	4)	-	_	•	•	•	•	•	•	.07
	152-2/4 (D)	W35	2x30x16x9g	⁵)	ı	ı	ı	-	•	-	-	1	.73
		1 3/4 in	13T 8/16DP	4)	ı	ı	ı	ı	ı	•	•	•	.69
	165-4 (E)	1 3/4 in	13T 8/16DP	4)	ı	ı	-	ı	1	-	•	•	.72

4/64 Bosch Rexroth AG A4VG | RE 92003/03.09

Ordering Code / Standard Program

A4 \	/ G			D					/	32		_	N										
01	02	03	04	05	06	07	08	09		10	11		12	13	14	15	16	17	18	19	20	21	22

	Valves	setting range Δp	28	40	56	71	90	125	180	250	
	With high-pressure relief valve, pilot operated	100420 bar with bypass	-	-	-	•	•	•	•	•	1
	With high-pressure relief valve,	270420 bar without bypass	•	•	•	_	_	-	_	_	3
18	direct operated (fixed setting)	with bypass	•	•	•	_	_	_	-	-	5
		100250 bar without bypass	•	•	•	-	_	_	-	-	4
		with bypass	•	•	•	_	_	_	_	_	6

	Filtration		28	40	56	71	90	125	180	250	
	Filtration in the suction line o	f boost pump (filter not included in supply)	•	•	•	•	•	•	•	•	S
	Filtration in pressure line ports for external boost	•	•	•	•	•	•	•	•	D	
		_	•	•	•	•	•	•	-	K	
19	Filter mounted with cold	_	•	•	•	•	•	•	-	F	
	Filter mounted with cold start valve and	-	•	•	•	•	•	•	-	Р	
	contamination indicator through: electr. signal - DEUTSCH connector				•	•	•	•	•	-	В
	External supply (version wit	•	•	•	•	•	•	•	•	E	

	Swivel angle indicator	28	40	56	71	90	125	180	250	
00	Without swivel angle indicator (without code)	•	•	•	•	•	•		•	
20	Electric swivel angle sensor	•	•	•	•	•	•	•	•	R

	Connector for solenoids	s (only for EP, EZ, DA)	28	40	56	71	90	125	180	250	
	DEUTSCH connector	without suppressor diode	•	•	•	•	•	•	•	•	Р
	molded, 2-pin	with suppressor diode (only for EZ and DA)	0	0	0	0	0	О	0	0	a

Standard / special version⁶)

	Standard version	without code		
00		combined with attachment part or attachment pump	-k	ĸ
22	Special version		-9	s
		combined with attachment part or attachment pump	-S	šK

¹⁾ Standard for combination pump - 1st pump: shaft **Z**

■ = available	O = on request	- = not available
---------------	----------------	-------------------

= preferred program

 $^{^2}$) Standard for combination pump – 1st pump: shaft ${\bf S}$

 $^{^{3}}$) 2 = 2-bolt; 4 = 4-bolt

 $^{^{4}}$) Hub for splined shaft acc. to ANSI B92.1a-1976 (splined shaft assigned acc. to SAE J744, see page 50-52)

⁵) Hub for splined shaft acc. to DIN 5480

⁶⁾ Adjustment data are included in the material number

Technical Data

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (HF hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The variable pump A4VG is unsuitable for operation with HFA, HFB and HFC. If HFD or environmentally acceptable hydraulic fluids are being used, the limitations regarding technical data and seals mentioned in RE 90221 and RE 90223 must be observed.

When ordering, please indicate the used hydraulic fluid.

Operating viscosity range

For optimum efficiency and service life, select an operating viscosity (at operating temperature) within the optimum range of

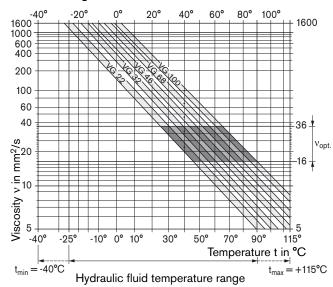
$$v_{opt}$$
 = opt. operating viscosity 16...36 mm²/s

depending on the circuit temperature (closed circuit).

Limits of viscosity range

The limiting values for viscosity are as follows:

 v_{min} = 5 mm²/s short term (t < 3 min) at max. perm. temperature of t_{max} = +115 °C.


 $v_{\text{max}} = 1600 \text{ mm}^2/\text{s}$ short term (t < 3 min) at cold start (p \leq 30 bar, n \leq 1000 rpm, $t_{\text{min}} =$ -40 °C). Only for starting up without load. Optimum operating viscosity must be reached within approx. 15 minutes.

Note that the maximum hydraulic fluid temperature of 115 °C must not be exceeded locally either (e.g. in the bearing area). The temperature in the bearing area is - depending on pressure and speed - up to 5 K higher than the average case drain temperature.

Special measures are necessary in the temperature range from -40 °C to -25 °C (cold start phase), please contact us.

For detailed information about use at low temperatures, see RE 90300-03-B.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit the circuit temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt}) - the shaded area of the selection diagram. We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C an operating temperature of 60 °C is set. In the optimum operating viscosity range (v_{opt}; shaded area) this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Please note: The case drain temperature, which is affected by pressure and speed, is always higher than the circuit temperature. At no point in the system may the temperature be higher than 115 °C.

If the above conditions cannot be maintained due to extreme operating parameters, please consult us.

Bosch Rexroth AG A4VG | RE 92003/03.09

Technical Data

Filtration

6/64

The finer the filtration, the higher the cleanliness level of the hydraulic fluid and the longer the service life of the axial piston

To ensure functional reliability of the axial piston unit the hydraulic fluid must have a cleanliness level of at least

20/18/15 according to ISO 4406.

Depending on the system and the application, for the A4VG, we recommend

Filter elements $\beta_{20} \ge 100$

With a rising differential pressure at the filter elements, the β -value must not deteriorate.

At very high hydraulic fluid temperatures (90 °C to max. 115 °C) at least cleanliness level

19/17/14 according to ISO 4406 is required.

If the above classes cannot be observed, please contact us. For notes on filtration types, see pages 55-58

Operating pressure range

Input

Variable pump (with external supply, E): For control EP, EZ, HW and HD boost pressure (at n = 2000 rpm) p_{Sp} For control DA, DG boost pressure (at n = 2000 rpm) p_{Sp} Boost pump: suction pressure $p_{\text{s min}}$ (v $\leq 30~\text{mm}^2/\text{s})$ _____ ≥ 0.8 bar absolute at cold starts, short term (t \leq 3 min) $__$ \geq 0.5 bar absolute

Output

Variable pump:

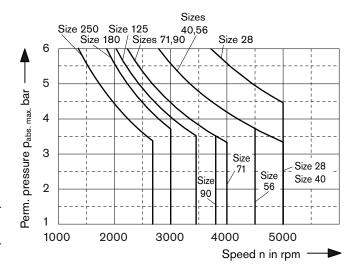
pressure at port A or B

Nominal pressure p _N	400 bar
Peak pressure p _{max}	450 bar
Boost pump:	
peak pressure p _{Sp max}	_ 40 bar
(pressure data according to DIN 24312)	

Nominal pressure: Max. design pressure at which fatigue

strength is ensured.

Peak pressure: Max. operating pressure which is permis-


sible for short term (t<1s).

Shaft seal ring

Permissible pressure loading

The service life of the shaft seal ring is affected by the speed of the pump and the case drain pressure. It is recommended that the average, continuous case drain pressure at operating temperature 3 bar absolute not be exceeded (max. permissible case drain pressure 6 bar absolute at reduced speed, see diagram). Short term (t < 0.1 s) pressure spikes of up to 10 bar absolute are permitted. The service life of the shaft seal ring decreases with an increase in the frequency of pressure

The case pressure must be equal to or greater than the external pressure on the shaft seal ring.

Temperature range

The FKM shaft seal ring is permissible for case temperatures of -25 °C to +115 °C.

For application cases below -25 °C, an NBR shaft seal ring is necessary (permissible temperature range: -40 °C to +90 °C). Please state NBR shaft seal ring in plain text when ordering. Please contact us.

Technical Data

Table of values (theoretical values, without efficiencies and tolerances; values rounded)

Size				28	40	56	71	90	125	180	250
Displacement											
variable pump		$V_{g max}$	cm ³	28	40	56	71	90	125	180	250
boost pump (at p = 20 b	ar)	$V_{g Sp}$	cm ³	6.1	8.6	11.6	19.6	19.6	28.3	39.8	52.5
Speed											
maximum at $V_{g max}$		n _{max continuous}	rpm	4250	4000	3600	3300	3050	2850	2500	2400
limited maximum 1)		n _{max limited}	rpm	4500	4200	3900	3600	3300	3250	2900	2600
intermittent maximum 2)		n _{max interm.}	rpm	5000	5000	4500	4100	3800	3450	3000	2700
minimum		n _{min}	rpm	500	500	500	500	500	500	500	500
Flow											
at $n_{\text{max continuous}}$ and $V_{\text{g max}}$	t	q _{v max}	l/min	119	160	202	234	275	356	450	600
Power ³)											
at $n_{\text{max continuous}}$ and $V_{\text{g max}}$	$\Delta p = 400 \text{ bar}$	P_{max}	kW	79	107	134	156	183	237	300	400
Torque ³)											
at $V_{g max}$	$\Delta p = 400 \text{ bar}$	T _{max}	Nm	178	255	356	451	572	795	1144	1590
	$\Delta p = 100 \text{ bar}$	T	Nm	44.5	63.5	89	112.8	143	198.8	286	398
Rotary stiffness	Shaft end S	С	Nm/rad	31400	69000	80800	98800	158100	218300	244500	354500
	Shaft end T	С	Nm/rad	-	_	95000	120900	-	252100	318400	534300
	Shaft end A	С	Nm/rad	_	79600	95800	142400	176800	256500	_	_
	Shaft end Z	С	Nm/rad	32800	67500	78800	122800	137000	223700	319600	624200
	Shaft end U	С	Nm/rad	-	50800	-	-	107600	-	-	-
Moment of inertia for rotary	group	J_{GR}	kgm²	0.0022	0.0038	0.0066	0.0097	0.0149	0.0232	0.0444	0.0983
Angular acceleration max. 4	+)	α	rad/s²	38000	30000	24000	21000	18000	14000	11000	6700
Filling capacity		V	L	0.9	1.1	1.5	1.3	1.5	2.1	3.1	6.3
Weight approx. (without thr	ough drive)	m	kg	29	31	38	50	60	80	101	156

 1) Restricted maximum speed: — at half corner power (e.g. at $V_{g max}$ and p_{N} /2)

2) Intermittent maximum speed:

 at high idle speed
 Δp = 70...150 bar an

 $\begin{array}{ll} \text{- at overspeed:} & \Delta p = 70...150 \text{ bar and } V_{g \text{ max}} \\ \text{- at reversing peaks:} & \Delta p \leq 300 \text{ bar and } t \leq 0.1 \text{ s.} \end{array}$

- The limit value applies for a single pump only.
- The load capacity of the connection parts has to be considered.

Caution: Exceeding the permissible limit values may result in a loss of function, a reduction in service life or in the destruction of the axial piston unit.

A calculation can be performed to determine the permissible values.

Determining the size

Flow
$$q_v = \frac{V_g \bullet n \bullet \eta_v}{1000} \qquad | /min \qquad V_g = \text{displacement volume per revolution in cm}^3$$

$$\Delta p = \text{differential pressure in bar}$$

$$n = \text{speed in rpm}$$

$$\eta_v = \text{volumetric efficiency}$$

$$\eta_{mh} = \text{mechanical-hydraulic efficiency}$$

$$\eta_{mh} = \text{total efficiency}$$

$$\eta_t = \text{total efficiency}$$

³) Without boost pump

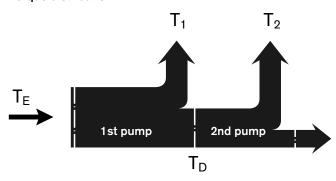
⁴) – The area of validity is situated between the minimum required and maximum permissible speed. It applies for external stimuli (e.g. engine 2-8 times rotary frequency, cardan shaft twice the rotary frequency).

Technical Data

8/64

Permissible axial and radial loading on drive shaft

Size				28	40	56	71	90	125	180	250
Radial force, max.		$F_{q max}$	N	2500	3600	5000	6300	8000	11000	16000	22000
at distance (from shaft collar)	a,b,c	a	mm	17.5	17.5	17.5	20	20	22.5	25	29
		$F_{q max}$	N	2000	2891	4046	4950	6334	8594	12375	16809
		b	mm	30	30	30	35	35	40	45	50
		$F_{q max}$	Ν	1700	2416	3398	4077	5242	7051	10150	13600
		С	mm	42.5	42.5	42.5	50	50	57.5	60	71
Axial force, max.	F _{ax}	-F _{ax max}	N	1557	2120	2910	4242	4330	5743	7053	4150
	+ →	+F _{ax max}	N	417	880	1490	2758	2670	3857	4947	4150


Note: special requirements apply in the case of belt drives. Please contact us.

Permissible input and through-drive torques

Size			28	40	56	71	90	125	180	250
Torque (at $V_{g max}$ and $\Delta p = 400$ bar) ¹) T_{max} Nm		Nm	178	254	356	451	572	795	1144	1590
Input torque, max. 2)										
at shaft end Z	$T_{E \; perm.}$	Nm	352	522	522	912	912	1460	3140	4350
DIN 5480			W25	W30	W30	W35	W35	W40	W50	W55
at shaft end A	T _{E perm.}	Nm	-	912	912	1460	2190	2190	-	-
DIN 5480				W35	W35	W40	W45	W45		
at shaft end S	T _{E perm.}	Nm	314	602	602	602	1640	1640	1640	1640
ANSI B92.1a-1976 (SAE J744)			1 in	1 1/4 in	1 1/4 in	1 1/4 in	1 3/4 in	1 3/4 in	1 3/4 in	1 3/4 in
at shaft end T	T _{E perm.}	Nm	-	-	970	970	_	2670	4070	4070
ANSI B92.1a-1976 (SAE J744)					1 3/8 in	1 3/8 in		2 in	2 1/4 in	2 1/4 in
at shaft end U ³)	T _{E perm.}	Nm	-	314	-	_	602	_	-	-
ANSI B92.1a-1976 (SAE J744)				1 in			1 1/4 in			
Through-drive torque, max. 4)	T _{D perm.}	Nm	231	314	521	660	822	1110	1760	2230

¹⁾ Efficiency not considered

Torque distribution

²⁾ For drive shafts with no radial force

³⁾ Shaft "U" is only permitted as a shaft end on the **2nd pump** in a combination pump of the same size.

⁴⁾ Note max. input torque for shaft S!

9/64

High-Pressure Relief Valves

Setting ranges

High-pressure relief valve, direct operated (size 2856)	Differential pressure setting ∆p _{HP}
Setting range for valve 3, 5	420 bar
Δp 270 - 420 bar	400 bar ¹)
(refer to ordering code)	360 bar
	340 bar
	320 bar
	300 bar
	270 bar
Setting range for valve 4, 6	250 bar
Δp 100 - 250 bar	230 bar ¹)
(refer to ordering code)	200 bar
	150 bar
	100 bar

High-pressure relief valve, pilot operated (size 71250)	Differential pressure setting Δp _{HP}
Setting range for valve 1	420 bar
Δp 100 - 420 bar	400 bar ¹)
(refer to ordering code)	360 bar
	340 bar
	320 bar
	300 bar
	270 bar
	250 bar
	230 bar
	200 bar
	150 bar
	100 bar

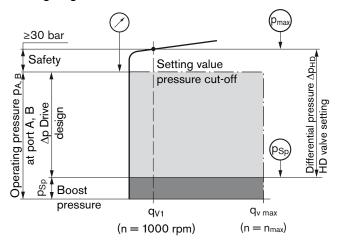
¹⁾ Standard differential pressure setting. The valves will be set to this value if the differential pressure is not specified on ordering.

Please state in plain text when ordering:

(only the Δp_{HP} values shown in the table are possible)

High-pressure relief valve A

High-pressure relief valve B


 $\begin{array}{ll} \mbox{Differential pressure setting:} & \Delta p_{HD} = ... \mbox{ bar} \\ \mbox{opening pressure of the HD valve (at q_{V \ 1}):} & p_{max} = ... \mbox{ bar} \end{array}$

 $(p_{max} = \Delta p_{HD} + p_{Sp})$

Differential pressure setting : $\Delta p_{HD} = ...$ bar opening pressure of the HD valve (at $q_{V 1}$): $p_{max} = ...$ bar

 $(p_{\text{max}} = \Delta p_{\text{HD}} + p_{\text{Sp}})$

Setting diagram

Note: valve is set at n = 1000 rpm and $V_{g \text{ max}} (q_{v \text{ 1}})$

Example: boost pressure 30 bar; operating pressure 400 bar

Operating pressure p_{AB} - boost pressure p_{Sp} + safety = differential pressure Δp_{HD} 400 bar + 30 bar + 40 bar

Bypass function

The bypass function can only be used for short periods with reduced displacement, e.g. to tow a vehicle out of an immediate danger zone.

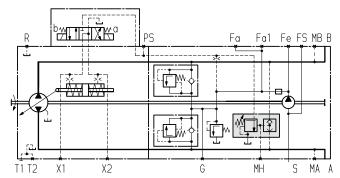
Note:

The bypass function and the pilot operated high-pressure valves (size 71...250) are not shown in these circuit diagrams.

10/64 Bosch Rexroth AG A4VG | RE 92003/03.09

Pressure Cut-Off, D

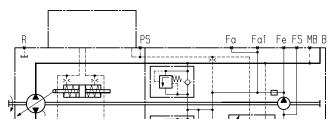
The pressure cut-off corresponds to a pressure regulation which, after reaching the set pressure, adjusts the displacement of the pump to $V_{g\ \text{min}}.$


This valve prevents the operation of the high-pressure relief valves when accelerating or decelerating.

Both the pressure peaks occurring when the swashplate is swiveled rapidly and also the maximum pressure in the system are safeguarded by the high-pressure relief valves.

The setting range of the pressure cut-off may be anywhere within the entire operating pressure range. However, it must be set 30 bar lower than the setting of the high-pressure relief valves (see setting diagram, page 9).

Please state the setting value of the pressure cut-off in plain text when ordering.


Circuit diagram with pressure cut-off. Example: Electric two-position control, EZ1D/EZ2D

NV - Version Without Control Unit

The mounting surface for the control unit is machined and is sealed with the standard seal for control units and a cover plate. This version is ready for retrofitting to control units (HD, HW, EP, EZ). When used directly for "DA" control and in combinations with "DA" control, the appropriate adjustments must be made to the spring assembly of the adjusting cylinder and control plate.

Standard version 1)

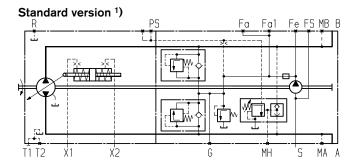
 1) Size 28 and 250 without port F_{a1} and F_{S}

DG - Hydraulic Control, Direct Operated

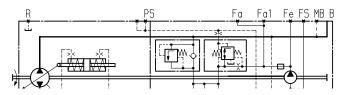
With the Direct Operated Hydraulic Control (DG), pump displacement is controlled by a hydraulic control pressure applied directly to the stroke cylinder through either the X_1 or X_2 port. In this way, the swashplate and thus the displacement is switchable from $V_g = 0$ to $V_{g \, \text{max}}$. Each direction of through put flow is assigned to a port.

Pilot pressure 0 bar \triangleq position $V_g = 0$

The required pilot pressure for position $V_{g\,max}$ depends on operating pressure and speed.


Max. permissible pilot pressure 40 bar

For project planning, please consult us.

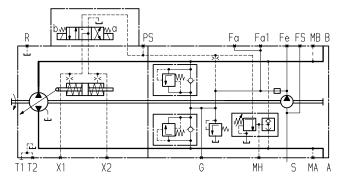

The pressure cut-off and the DA control valve only become effective if the pilot control unit used for controlling the DG control is supplied from port P_S .

Assignment of direction of rotation – control – direction of through put flow

refer to HD control, page 12 (control pressure X_1 ; X_2).

Version with DA control valve 1)

 1) Size 28 and 250 without port F_{a1} and F_{S}

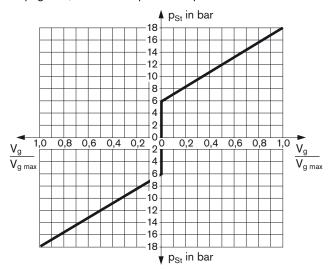

EZ - Electric Two-Position Control, With Switching Solenoid

By energizing or de-energizing a control current to either switching solenoid a or b, the stroke cylinders of the pump are supplied with control pressure by the EZ control unit. In this way, the swashplate and thus the displacement is switchable without intermediate settings from $V_{\rm g}=0$ to $V_{\rm g\ max}$. Each direction of through put flow is assigned to a solenoid.

Solenoid technical data	EZ1	EZ2
Voltage	12 V DC (±20 %)	24 V DC (±20 %)
Neutral position V _g =0	de-energized	de-energized
Position V _{g max}	current energized	current energized
Nominal resistance (at 20°C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Current required, minimum effective	1.32 A	0.67 A
Actuated time	100 %	100 %
Type of protection	see range of conne	ectors on page 60

Standard: switching solenoid without manual emergency operation. On request: manual emergency operation with spring reset available. Assignment direction of rotation - Control - Direction of through put flow DA control see page 16.

Standard version 1)


 1) Size 28 and 250 without port F_{a1} and F_{S}

12/64 Bosch Rexroth AG A4VG | RE 92003/03.09

HD - Hydraulic Control, Pilot-Pressure Related

Depending on the pressure difference of the pilot pressure p_{St} in the two control lines (ports Y_1 and Y_2), the stroke cylinder of the pump is supplied with control pressure via the HD control unit. Thus, the swashplate – and, therefore, the displacement – to be infinitely adjustable. A different through put flow direction is associated with each control line.

If the pump is also equipped with a DA control valve (see page 17), automotive operation is possible for travel drives.

 $\begin{array}{ll} V_g & \text{displacement at } p_{St} \\ V_{g \; \text{max}} & \text{displacement at } p_{St} = 18 \; \text{bar} \end{array}$

Pilot pressure $p_{St} = 6 - 18$ bar at ports Y_1 , Y_2

Start of control 6 bar

End of control 18 bar (max. displacement $V_{g max}$)

Please note:

The external control device must vent the Y_1 and Y_2 ports to tank pressure in neutral.

CAUTION

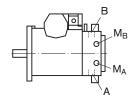
The spring centering in the pilot control unit is not a safety device

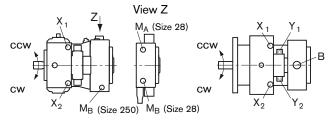
Through contamination in the control unit – e.g. in hydraulic fluid, wear particles, or particles out of a system –the valve spool can get stuck in an undefined position. In this case, the pump flow does not follow the command inputs of the machine operator anymore .

- Make sure that a proper emergency shut down function can bring the driven machine movements to a safe position immediately (e.g. stop).
- Adhere to the specified cleanliness level 20/18/15 (< 90 °C) or 19/17/14 (> 90 °C) to ISO 4406.

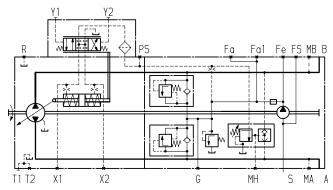
Assignment
Direction of rotation - Control - Direction of through put flow

		Size	Pilot pressure	Control pressure	Through put flow	Operating pressure
		Y ₁	X ₁	A to B	M _B	
Ē	~	2856	Y ₂	X ₂	B to A	M _A
Direction of rotation	8 51 050	Y ₁	X ₁	B to A	M _A	
of ro		71250	Y ₂	X_2	A to B	M _B
ion	00 50	Y ₁	X ₁	B to A	M _A	
irect	2856	2656	Y ₂	X_2	A to B	M _B
<u> </u>	71250	Y ₁	X ₁	A to B	M _B	
		Y ₂	X_2	B to A	M _A	

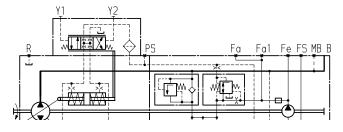

Sizes 28, 250


M_B (Size 250)

A

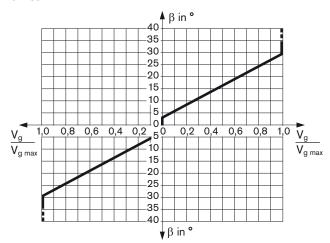

M_A (Size 250)

Sizes 40...180



Standard version1)

Version with DA control valve1)



1) Size 28 and 250 without port Fa1 and FS

HW - Hydraulic Control, Mechanical Servo

Depending on the actuation direction a or b of the control lever, the stroke cylinder of the pump is supplied with control pressure via the HW control unit. Thus, the swashplate – and, therefore, the displacement – to be infinitely adjustable. A different through put flow direction is associated with each direction of control lever actuation.

If the pump is also equipped with a DA control valve (see page 17), automotive operation is possible for travel drives.

Swivel angle β at the control lever for deflection:

Start of control at $\beta = 3^{\circ}$

End of control at $\beta = 29^{\circ}$ (max. displacement $V_{g \text{ max}}$)

Mech. stop: sizes 28...71 _____ ±40° sizes 90...250 ±35°

The maximum required torque at the lever is 170 Ncm. To prevent damage to the HW control module a positive mechanical stop must be provided for the HW control linkage.

Note:

Spring centering enables the pump to move automatically into neutral position ($V_g = 0$) as soon as there is no longer any torque on the control lever of the HW control unit (regardless of deflection angle).

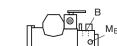
Variation: Neutral position switch, L

The switch contact in the neutral position switch is closed when the control lever on the HW control unit is in its neutral position. The switch opens if the control lever is moved out of neutral in either direction.

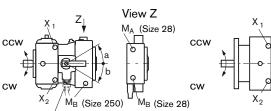
The neutral position switch provides a safety function for drive units that require zero flow under certain operating conditions (e.g. starting diesel engines).

Technical data of neutral position switch						
Load capacity	20 A (continuous), without switching operating					
Switching	15 A / 32 V (ohm's load)					
capacity	4 A / 32 V (inductive load)					
Connector version	DEUTSCH connector DT04-2P-EP04 (mating connector see page 60)					

Assignment
Direction of rotation - Control - Direction of through put flow

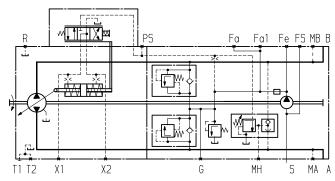

		Size	Lever direction	Control pressure	Through put flow	Operating pressure
		2856	а	X ₂	B to A	M _A
Ē	Š	2656	b	X ₁	A to B	M _B
tatic	٥	71250	a	X_2	A to B	M _B
ر ام			b	X ₁	B to A	M _A
Direction of rotation	io —	00 50	а	X ₂	A to B	M _B
irect	χς	2856	b	X ₁	B to A	M _A
iā S	71250	а	X ₂	B to A	M _A	
		b	X ₁	A to B	M _B	

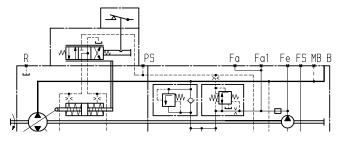
Sizes 28, 250


M_B (Size 250)

A

M_A (Size 250)

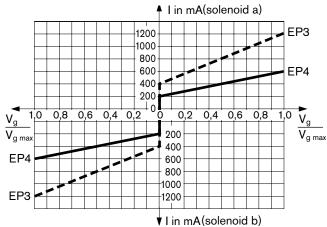

Sizes 40...180


Neutral position switch

Neutral position switch

Standard version 1)

Version with DA control valve and neutral position switch 1)


 1) Size 28 and 250 without port F_{a1} and F_{S}

14/64 Bosch Rexroth AG A4VG | RE 92003/03.09

EP - Electric Control, With Proportional Solenoid

Depending on the preselected current I at the two proportional solenoids (a and b), the stroke cylinder of the pump is supplied with control pressure via the EP control unit. Thus, the swashplate – and, therefore, the displacement – to be infinitely adjustable. One direction of through put flow is assigned to each proportional solenoid.

If the pump is also equipped with a DA control valve (see page 17), automotive operation is possible for travel drives.

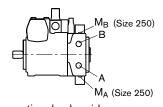
Solenoid technical data	EP3	EP4
Voltage	12 V DC (±20 %)	24 V DC (±20 %)
Control current		
Start of control at V _{g 0}	400 mA	200 mA
End of control at V _{g max}	1200 mA	600 mA
Limiting current	1.54 A	0.77 A
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω
Dither frequency	100 Hz	100 Hz
Actuated time	100 %	100 %
Type of protection	see range of conr	nectors on page 60

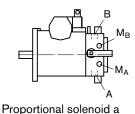
The following electronic controllers and amplifiers are available for actuating the proportional solenoids (details also available at www.boschrexroth.com/mobile-electronics):

- BODAS controller RC	
series 20	RE 95200
series 21	RE 95201
series 22	RE 95202
series 30	RE 95203
and application software	
- Analog amplifier RA	RE 95230

CAUTION

The spring centering in the pilot control unit is not a safety device


Through contamination in the control unit - e.g. in hydraulic fluid, wear particles, or particles out of a system –the valve spool can get stuck in an undefined position. In this case, the pump flow does not follow the command inputs of the machine operator anymore .


- Make sure that a proper emergency shut down function can bring the driven machine movements to a safe position immediately (e.g. stop).
- Adhere to the specified cleanliness level 20/18/15 (< 90 °C) or 19/17/14 (> 90 °C) to ISO 4406.

Assignment Direction of rotation - Control - Direction of through put flow

		Size	Actuation of Solenoid	Control pressure	Through put flow	Operating pressure
Direction of rotation	CW	2856	а	X ₁	A to B	M _B
			b	X_2	B to A	M _A
		71250	а	X ₁	B to A	M _A
			b	X_2	A to B	M _B
	ccw	2856	а	X ₁	B to A	M _A
		2856	b	X_2	A to B	M _B
		႘	71250	a	X ₁	A to B
		71250	b	X_2	B to A	M _A

Sizes 40...180

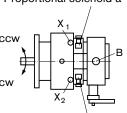
Proportional solenoid a View Z

X

X

X

X

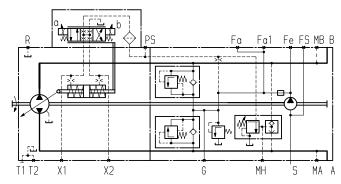

MA (Size 28)

CW

CW

MB (Size 250)

MB (Size 28)


Proportional solenoid b

Proportional solenoid b


Standard: proportional solenoid without manual emergency operation. On request: manual emergency operation with spring reset available.

EP - Electric Control, With Proportional Solenoid

Standard version¹)

Version with DA control valve1)

 $^{1}\!)$ Size 28 and 250 without port F_{a1} and F_{S}

16/64 Bosch Rexroth AG A4VG | RE 92003/03.09

DA - Hydraulic Control, Speed Related

The DA control is an engine speed-dependent, or automotive, type control system. The built-in DA regulating cartridge generates a pilot pressure that is proportional to pump (engine) drive speed. This pilot pressure is directed to the positioning cylinder of the pump by a solenoid actuated 4/3 way directional valve. Pump displacement is infinitely variable in each direction of flow, and is influenced by both pump drive speed and discharge pressure. Flow direction (i.e. machine forward or reverse) is controlled by energizing solenoid a or b.

Increasing pump drive speed generates a higher pilot pressure from the DA cartridge, with a subsequent increase in pump flow and/or pressure.

Dependent on the selected pump operating characteristics, increasing system pressure (i.e. machine load) causes the pump to swivel back towards a smaller displacement. Engine overload (anti-stall) protection is achieved by the combination of this pressure-related pump de-stroking, and the reduction of pilot pressure as the engine speed drops.

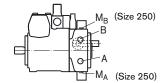
Any additional power requirement, such as implement hydraulics, may result in further engine pull down. This causes a further reduction in pilot pressure and therefore pump displacement. Automatic power division and full utilization of available power is thus achived for both the vehicle transmission and the implement hydraulics, with priority given to the implement hydraulics.

To provide controllable reduced vehicle speed operation when high engine speeds are required for fast implement hydraulics, various inching options are available.

The DA regulating cartridge can also be used in pumps with conventional control devices, such as EP, HW or HD, to provide an engine anti-stall function, or as a combination of automotive and displacement control functions.

Application of the DA control is only appropriate on certain types of vehicle drive systems, and requires a review of the engine and vehicle parameters to ensure proper application of the pump, and safe and efficient machine operation. All DA applications must therefore be reviewed by a Rexroth Application Engineer.

Solenoid technical data	DA1	DA2
Voltage	12 V DC (±20 %)	24 V DC (±20 %)
Neutral position V _{g 0}	de-energized	de-energized
Position V _{g max}	current energized	current energized
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Current required, minimum effective	1.32 A	0.67 A
Actuated time	100 %	100 %
Type of protection	see range of conr	nectors on page 60


Standard: switching solenoid without manual emergency operation. On request: manual emergency operation with spring reset available.

Assignment
Direction of rotation - Control - Direction of through put flow

		Size	Actuation of Solenoid	Control pressure	Through put flow	Operating pressure	
Direction of rotation	CW	2856	а	X_2	B to A	M _A	
			b	X ₁	A to B	M _B	
		71250	а	X_2	A to B	M _B	
			b	X ₁	B to A	M _A	
	CCW	2856	а	X_2	A to B	M _B	
		8		b	X ₁	B to A	M _A
		71250	а	X_2	B to A	M_A	
		71250	b	X ₁	A to B	M _B	

Sizes 28, 250

Switching solenoid b

Switching solenoid a View Z

CCW

X1

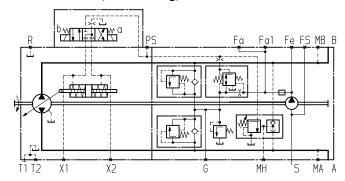
MA (Size 28)

CCW

CW

X2

MB (Size 250)
MB (Size 28)


CW

Switching solenoid a

Sizes 40...180

Switching solenoid b

Hydraulic control, speed related, DA control valve, fixed setting, DA1D2/DA2D2 1)

 1) Size 28 and 250 without port F_{a1} and F_{S}

DA - Hydraulic Control, Speed Related

Function and control of DA control calves

DA control valve, fixed setting (2)

Pilot pressure is generated in relation to drive speed. When ordering, please state in plain text: Start of control (set at factory).

DA control valve, mechanically adjustable with position lever (3)

Pilot pressure is generated in relation to drive speed. When ordering, please state in plain text: Start of control (set at factory).

Pilot pressure may be reduced, independently of drive speed, through mechanical operation of the position lever (inch function).

Max. perm. operating torque at the position lever $T_{\text{max}} = 4 \text{ Nm}$

Max. angle of rotation 70°, lever position: any.

Variation 3R _____ actuating direction of the position lever

clockwise

Variation 3L _____ actuating direction of the position lever

- counterclockwise

DA control valve, fixed setting and hydraulic inch valve mounted, (4, 8)

(only for pumps with DA control unit)

- Version with throttle valve sizes 28, 40, 56, 71
- Version with pressure-reducing valve sizes 90, 125, 180, 250

Permits the pilot pressure to be reduced independently of the drive speed via hydraulic control (port Z).

Variation 4:

Control at port Z by means of brake fluid from the vehicle braking system (hydraulically linked with the service brake).

Variation 8:

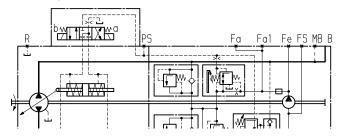
Control at port Z by means of mineral oil.

DA control valve with fixed setting, ports for pilot control device as inch valve (7)

Any reduction of pilot pressure, independent from the drive speed through the mechanical operation of the pilot control device.

The pilot control device is installed separately from the pump (for example in the driver's cabin) and connected with the pump by 2 hydraulic control lines via ports P_S and Y.

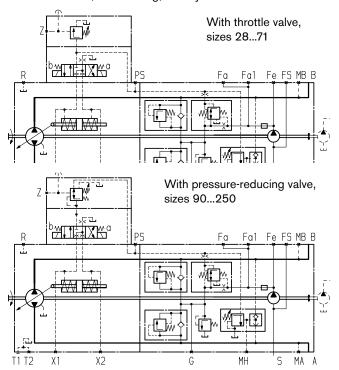
A suitable pilot control device must be ordered separately and is not included in supply.


Detailed information is available from our sales department and on our website www.boschrexroth.com/da-control. Use our computer program to work out the input design that meets your needs. A DA control must be approved by Rexroth.

Note: see page 61 for rotary inch valves.

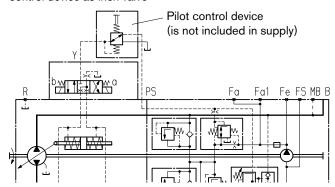
Circuit diagrams 1):

DA1D3/DA2D3


Hydraulic control, speed related, DA control valve, mech. adjustable with position lever

DA1D4/DA2D4

Hydraulic control, speed related,

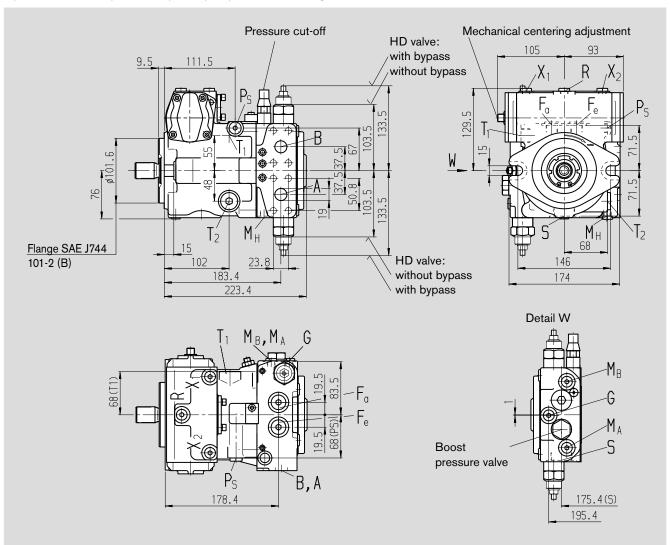

DA control valve, fixed setting, with hydraulic inch valve

DA1D7/DA2D7

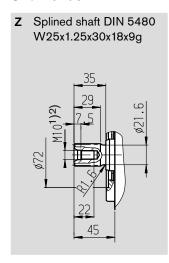
Hydraulic control, speed related, DA

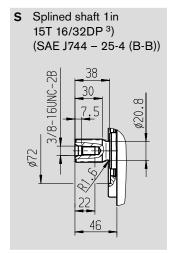
DA control valve, fixed setting, with separately installed pilot control device as inch valve

1) Size 28 and 250 without port Fa1 and FS


Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Unit Dimensions, Size 28


Version without control unit NV


Standard: suction port S at bottom (10)

Option: suction port S at top (13): port plate turned through 180°

Shaft ends

Ports

A, B	service line ports (high-pressure series)	SAE J518	3/4 in	
	fixing thread A/B	DIN 13	M10x1.5; 17 deep ²)	
T ₁	case drain or fill	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
T_2	case drain ⁴)	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
M_A,M_B	pressure gauge - operating pressure A, B ⁴)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
R	air bleed ⁴)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
S	boost suction port	DIN 3852	M33x2; 18 deep	540 Nm ²)
X ₁ , X ₂	port for control pressures (before orifice) 4)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
G	pressure port for auxiliary circuits 4)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
P_S	control pressure supply 4)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
F_{a}	filter output ⁴)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
F_{e}	filter input ⁴)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
M_H	port for balanced high pressure 4)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
Y_1, Y_2	remote control ports (only HD)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
Z	pilot pressure port (only DA4/8) ⁴)	DIN 3852	M10x1; 8 deep	30 Nm ²)
Υ	pilot pressure port (only DA7)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)

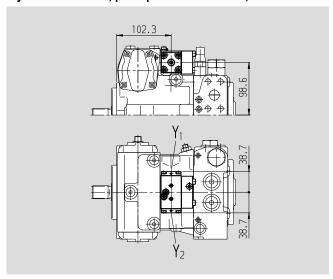
¹⁾ Center bore acc. to DIN 332 (thread acc. to DIN 13)

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

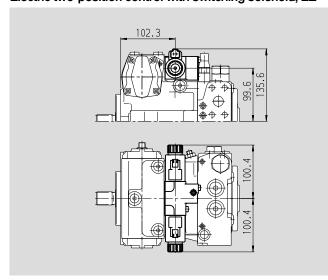
²) Please observe the general notes for the max. tightening torques on page 64

³⁾ ANSI B92.1a-1976, 30° pressure angle, flat root; side fit, tolerance class 5

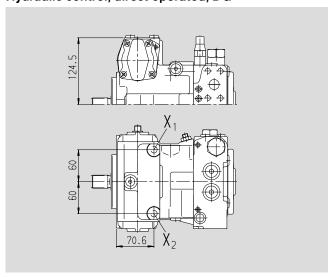
⁴⁾ Plugged

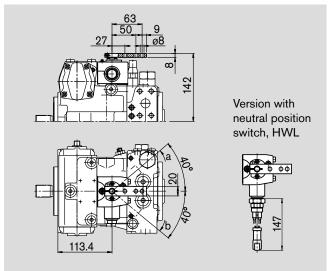

Bosch Rexroth AG A4VG | RE 92003/03.09

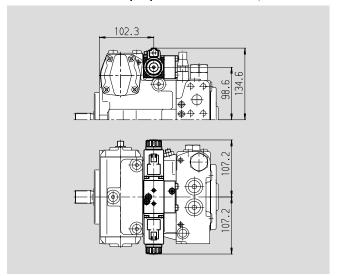
Unit Dimensions, Size 28

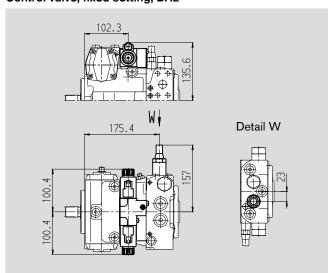

20/64

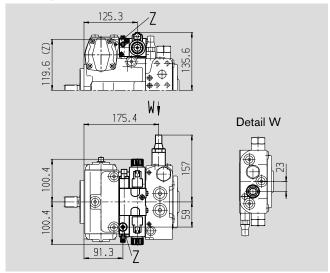
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


Hydraulic control, pilot-pressure related, HD

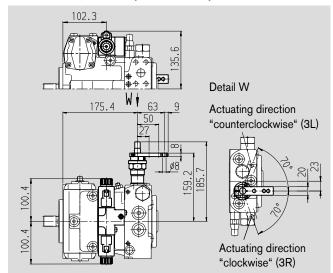

Electric two-position control with switching solenoid, EZ


Hydraulic control, direct operated, DG

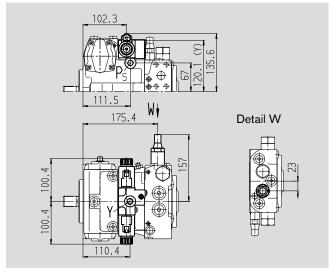

Hydraulic control, mechanical servo, HW


Electric control with proportional solenoid, EP

Hydraulic control, speed related, DA Control valve, fixed setting, DA2



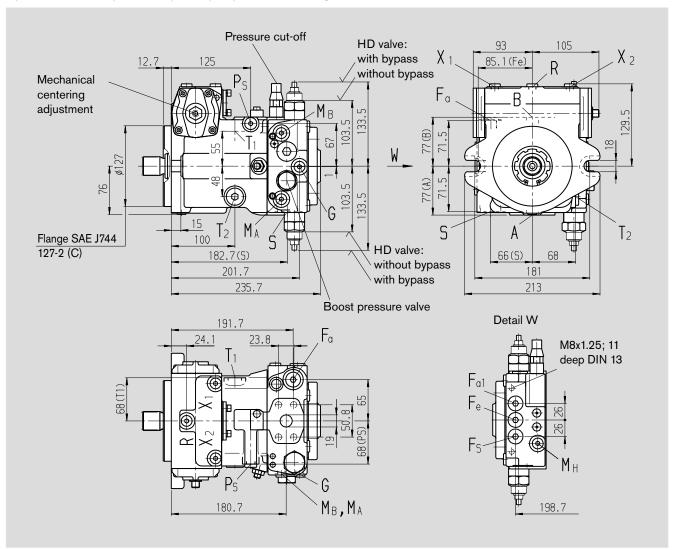
Control valve, fixed setting and hydraulic inch valve mounted, DA4/DA8



Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

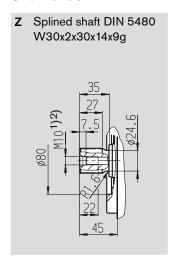
Control valve, mech. adjustable with position lever, DA3

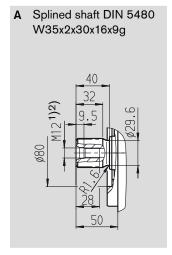
Control valve, fixed setting and ports for pilot control device, DA7

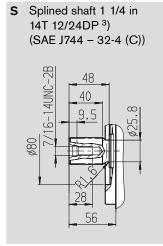


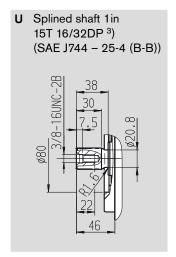
Unit Dimensions, Size 40 Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Version without control unit NV


Standard: suction port S at bottom (02)


Option: suction port S at top (03): port plate turned through 180°




Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

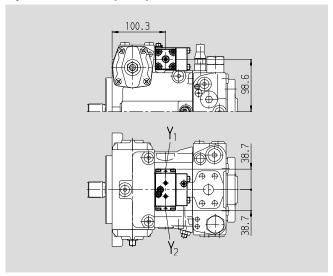
Shaft ends

Ports

A, B	service line ports (high-pressure series)	SAE J518	3/4 in	_
	fixing thread A/B	DIN 13	M10x1.5; 17 deep ²)	
T ₁	case drain or fill	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
T_2	case drain ⁴)	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
M_A , M_B	pressure gauge - operating pressure A, B 4)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
R	air bleed ⁴)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
S	boost suction port	DIN 3852	M33x2; 18 deep	540 Nm ²)
X_1, X_2	port for control pressures (before orifice) 4)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
G	pressure port for auxiliary circuits 4)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
P_S	control pressure supply ⁴)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
F_a	filter output ⁴)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
F_{a1}	filter output (mountable filter) 4)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
F_{e}	filter input ⁴)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
F_S	port from filter to suction line (cold start) 4)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
M_H	port for balanced high pressure ⁴)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
Y_1, Y_2	remote control ports (only HD)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
Z	pilot pressure port (only DA4/8) 4)	DIN 3852	M10x1; 8 deep	30 Nm ²)
Υ	pilot pressure port (only DA7)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)

¹⁾ Center bore acc. to DIN 332 (thread acc. to DIN 13)

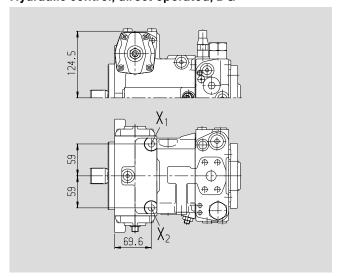
²⁾ Please observe the general notes for the max. tightening torques on page 64

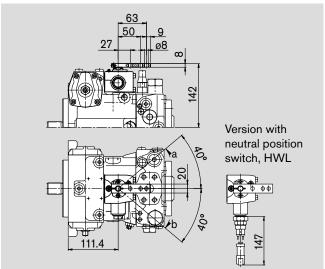

 $^{^{\}rm 3}$) ANSI B92.1a-1976, 30° pressure angle, flat root; side fit, tolerance class 5

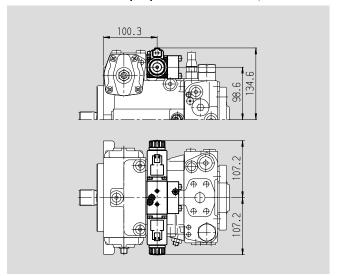
⁴⁾ Plugged

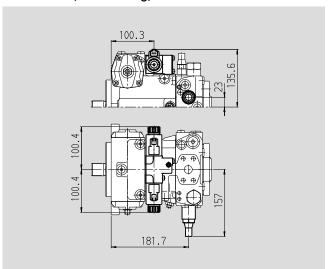
24/64

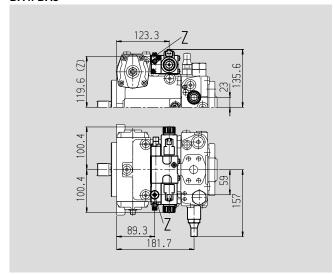
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


Hydraulic control, pilot-pressure related, HD

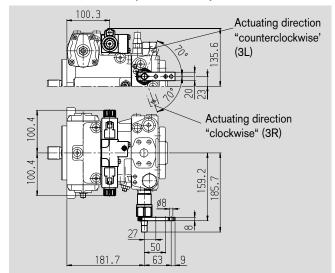

Electric two-position control with switching solenoid, EZ


Hydraulic control, direct operated, DG

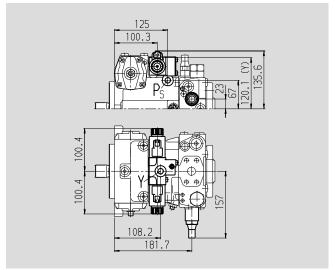

Hydraulic control, mechanical servo, HW


Electric control with proportional solenoid, EP

Hydraulic control, speed related, DA Control valve, fixed setting, DA2



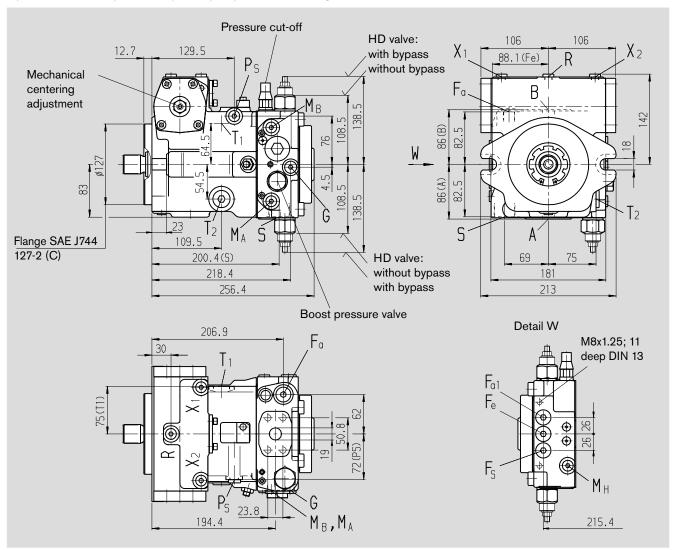
Control valve, fixed setting and hydraulic inch valve mounted, DA4/DA8



Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

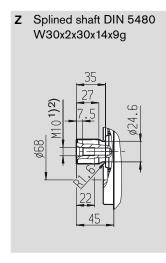
Control valve, mech. adjustable with position lever, DA3

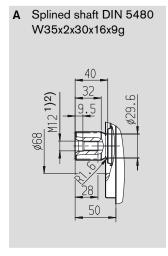
Control valve, fixed setting and ports for pilot control device,

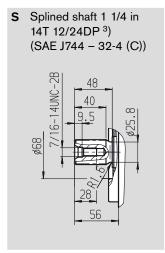

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Unit Dimensions, Size 56

Version without control unit NV


Standard: suction port S at bottom (02)


Option: suction port S at top (03): port plate turned through 180°



Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

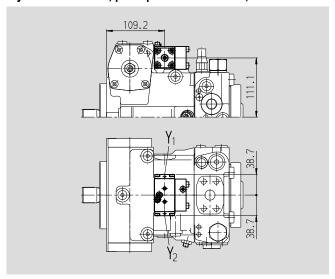
Shaft ends

Ports

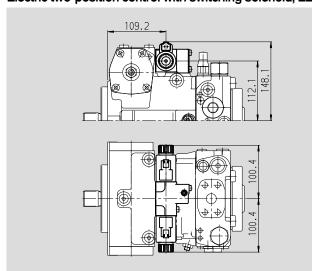
A, B	service line ports (high-pressure series)	SAE J518	3/4 in	
	fixing thread A/B	DIN 13	M10x1.5; 17 deep ²)	
T ₁	case drain or fill	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
T_2	case drain ⁴)	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
M_A,M_B	pressure gauge - operating pressure A, B ⁴)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
R	air bleed ⁴)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
S	boost suction port	DIN 3852	M33x2; 18 deep	540 Nm ²)
X_1, X_2	port for control pressures (before orifice) 4)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
G	pressure port for auxiliary circuits 4)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
P_S	control pressure supply 4)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
F_{a}	filter output ⁴)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
F_{a1}	filter output (mountable filter) 4)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
F_{e}	filter input ⁴)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
F_S	port from filter to suction line (cold start) 4)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
M_H	port for balanced high pressure 4)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
Y ₁ , Y ₂	remote control ports (only HD)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
Z	pilot pressure port (only DA4/8) 4)	DIN 3852	M10x1; 8 deep	30 Nm ²)
Υ	pilot pressure port (only DA7)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)

¹⁾ Center bore acc. to DIN 332 (thread acc. to DIN 13)

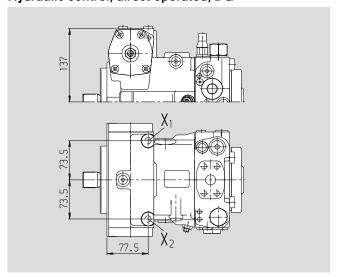
²⁾ Please observe the general notes for the max. tightening torques on page 64

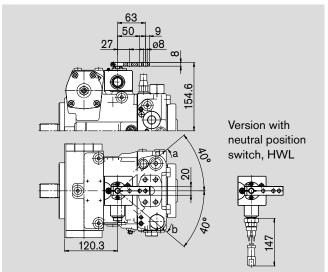

 $^{^{\}rm 3}$) ANSI B92.1a-1976, 30° pressure angle, flat root; side fit, tolerance class 5

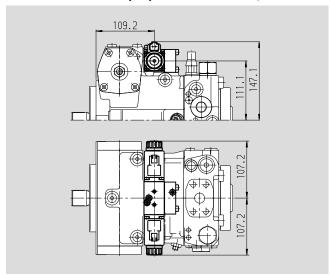
⁴⁾ Plugged

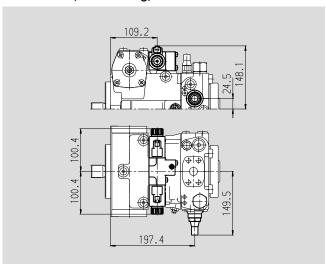

28/64

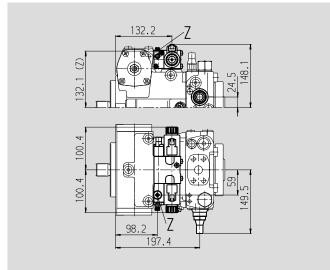
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


Hydraulic control, pilot-pressure related, HD

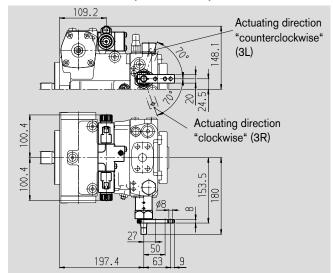

Electric two-position control with switching solenoid, EZ


Hydraulic control, direct operated, DG

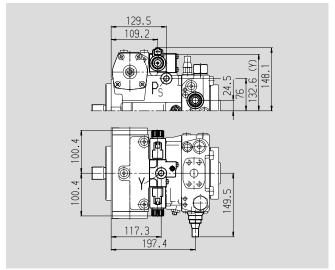

Hydraulic control, mechanical servo, HW


Electric control with proportional solenoid, EP

Hydraulic control, speed related, DA Control valve, fixed setting, DA2



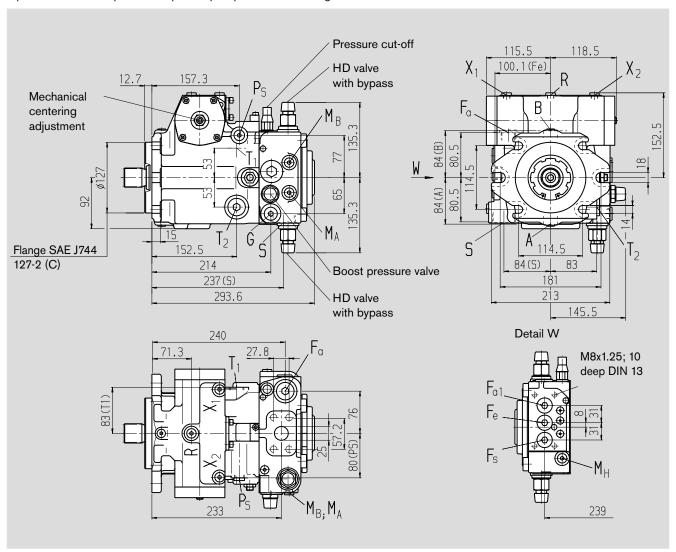
Control valve, fixed setting and hydraulic inch valve mounted, DA4/DA8



Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

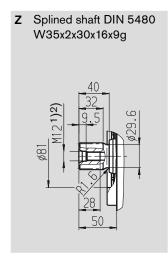
Control valve, mech. adjustable with position lever, DA3

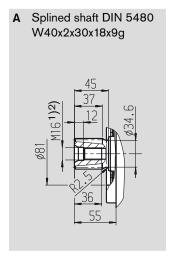
Control valve, fixed setting and ports for pilot control device, DA7

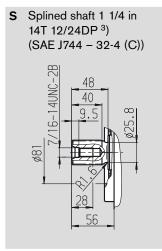

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

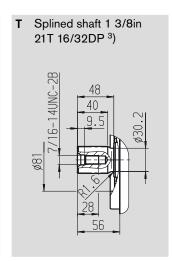
Unit Dimensions, Size 71

Version without control unit NV


Standard: suction port S at bottom (02)


Option: suction port S at top (03): port plate turned through 180°




Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Shaft ends

Ports

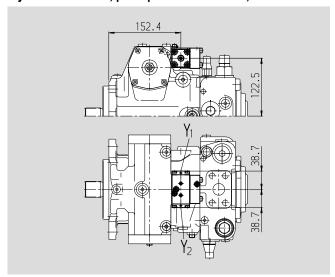
A, B	service line ports (high-pressure series)	SAE J518	1 in	
	fixing thread A/B	DIN 13	M12x1.75; 17 deep ²))
T ₁	case drain or fill	DIN 3852	M26x1.5; 16 deep	230 Nm ²)
T_2	case drain ⁴)	DIN 3852	M26x1.5; 16 deep	230 Nm ²)
M_A , M_B	pressure gauge - operating pressure A, B ⁴)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
R	air bleed ⁴)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
S	boost suction port	DIN 3852	M42x2; 20 deep	720 Nm ²)
X_1, X_2	port for control pressures (before orifice) 4)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
G	pressure port for auxiliary circuits 4)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
P_S	control pressure supply 4)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
F_a	filter output ⁴)	DIN 3852	M26x1.5; 16 deep	230 Nm ²)
F_{a1}	filter output (mountable filter) 4)	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
F_{e}	filter input ⁴)	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
F_S	port from filter to suction line (cold start) 4)	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
M_H	port for balanced high pressure 4)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
Y_1, Y_2	remote control ports (only HD)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
Z	pilot pressure port (only DA4/8) 4)	DIN 3852	M10x1; 8 deep	30 Nm ²)
Υ	pilot pressure port (only DA7)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)

¹⁾ Center bore acc. to DIN 332 (thread acc. to DIN 13)

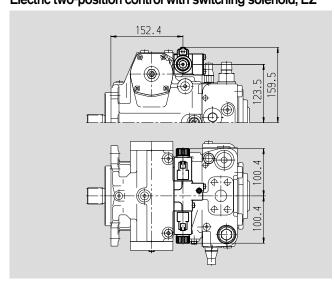
²) Please observe the general notes for the max. tightening torques on page 64

 $^{^{\}rm 3}$) ANSI B92.1a-1976, 30° pressure angle, flat root; side fit, tolerance class 5

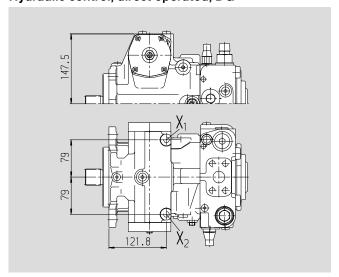
⁴⁾ Plugged

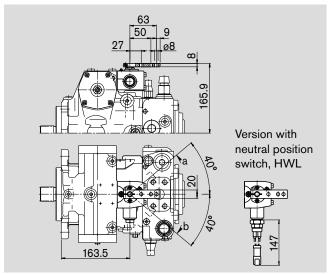

Bosch Rexroth AG A4VG | RE 92003/03.09

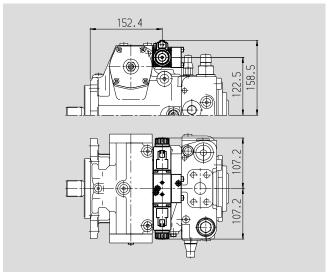
Unit Dimensions, Size 71

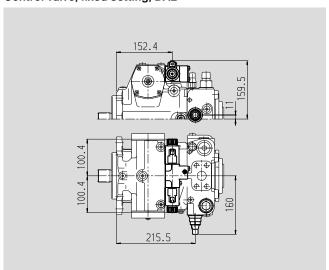

32/64

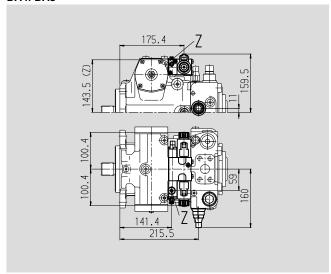
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


Hydraulic control, pilot-pressure related, HD

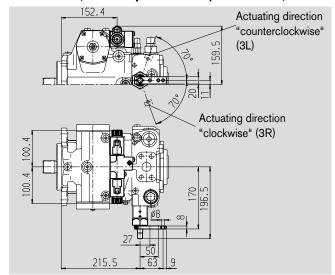

Electric two-position control with switching solenoid, EZ


Hydraulic control, direct operated, DG

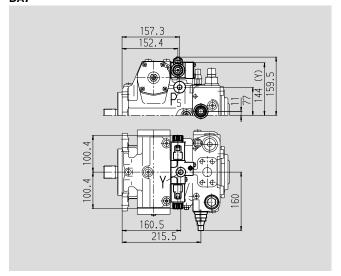

Hydraulic control, mechanical servo, HW


Electric control with proportional solenoid, EP

Hydraulic control, speed related, DA Control valve, fixed setting, DA2



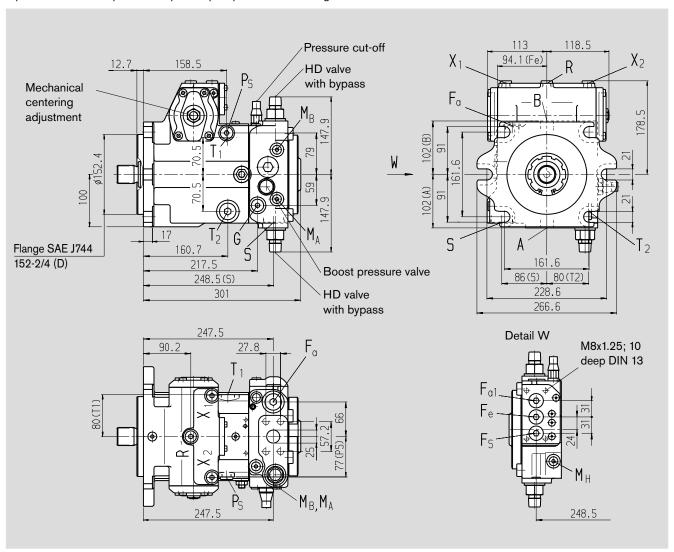
Control valve, fixed setting and hydraulic inch valve mounted, DA4/DA8



Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

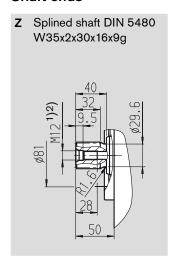
Control valve, mech. adjustable with position lever, DA3

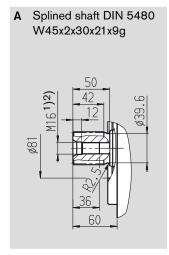
Control valve, fixed setting and ports for pilot control device, DA7

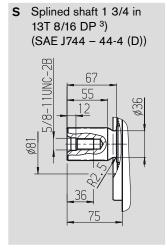

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

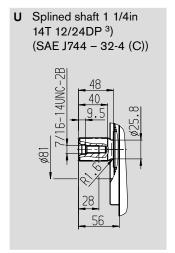
Unit Dimensions, Size 90

Version without control unit NV


Standard: suction port S at bottom (02)


Option: suction port S at top (03): port plate turned through 180°




Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Shaft ends

Ports

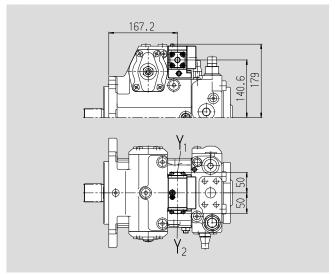
A, B	service line ports (high-pressure series)	SAE J518	1 in	
	fixing thread A/B	DIN 13	M12x1.75; 17 deep ²)	
T ₁	case drain or fill	DIN 3852	M26x1.5; 16 deep	230 Nm ²)
T_2	case drain ⁴)	DIN 3852	M26x1.5; 16 deep	230 Nm ²)
M_A,M_B	pressure gauge - operating pressure A, B ⁴)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
R	air bleed ⁴)	DIN 3852	M16x1.5; 12 deep	100 Nm ²)
S	boost suction port	DIN 3852	M42x2; 20 deep	720 Nm ²)
X ₁ , X ₂	ports for control pressure (before orifice) 4)	DIN 3852	M16x1.5; 12 deep	100 Nm ²)
G	pressure port for auxiliary circuits 4)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
P_S	control pressure supply 4)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
F_{a}	filter output ⁴)	DIN 3852	M26x1.5; 16 deep	230 Nm ²)
F_{a1}	filter output (mountable filter) 4)	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
F_{e}	filter input ⁴)	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
F_S	port from filter to suction line (cold start) 4)	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
M_H	port for balanced high pressure 4)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
Y ₁ , Y ₂	remote control ports (only HD)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
Z	pilot pressure port (only DA4/8) 4)	DIN 3852	M10x1; 8 deep	30 Nm ²)
Υ	pilot pressure port (only DA7)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)

¹⁾ Center bore acc. to DIN 332 (thread acc. to DIN 13)

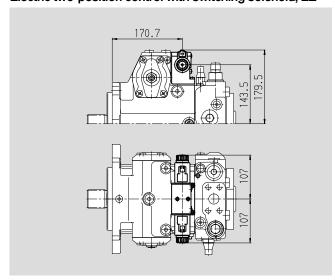
²⁾ Please observe the general notes for the max. tightening torques on page 64

 $^{^{\}rm 3}$) ANSI B92.1a-1976, 30° pressure angle, flat root; side fit, tolerance class 5

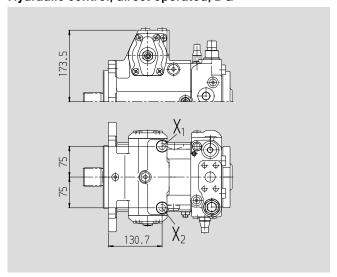
⁴⁾ Plugged

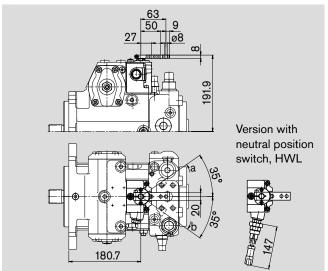

Bosch Rexroth AG A4VG | RE 92003/03.09

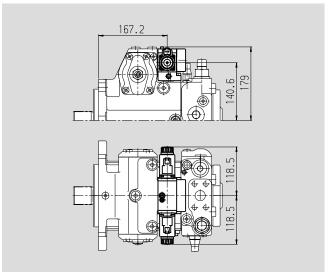
Unit Dimensions, Size 90

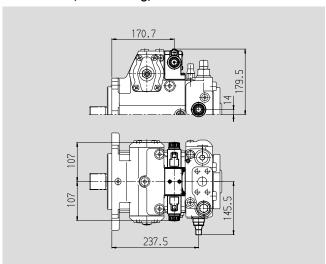

36/64

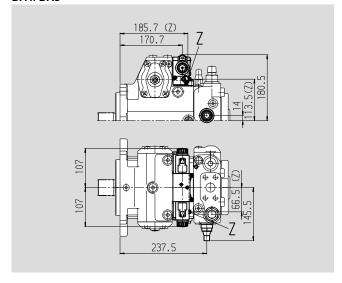
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


Hydraulic control, pilot-pressure related, HD

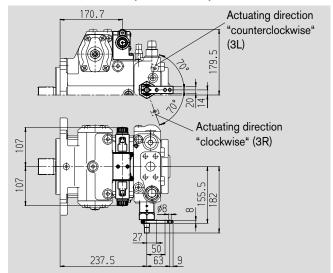

Electric two-position control with switching solenoid, EZ


Hydraulic control, direct operated, DG

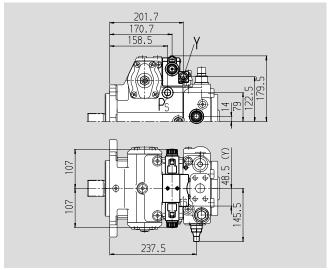

Hydraulic control, mechanical servo, HW


Electric control with proportional solenoid, EP

Hydraulic control, speed related, DA Control valve, fixed setting, DA2



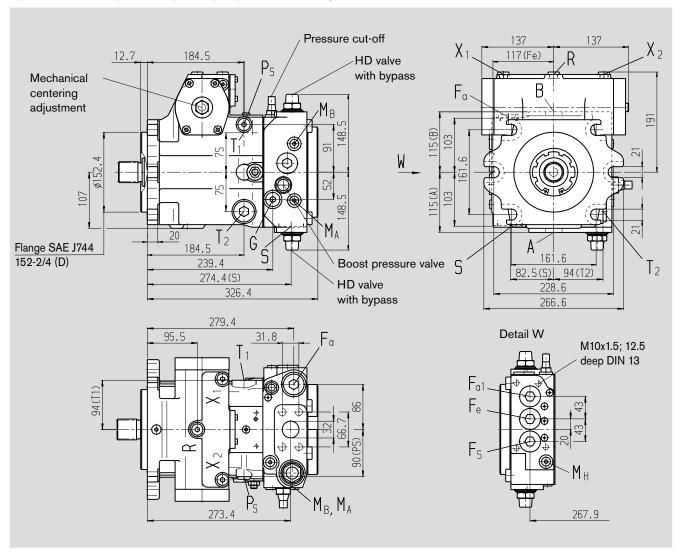
Control valve, fixed setting and hydraulic inch valve mounted, DA4/DA8



Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

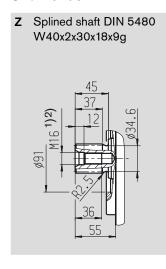
Control valve, mech. adjustable with position lever, DA3

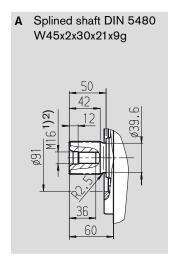
Control valve, fixed setting and ports for pilot control device, DA7

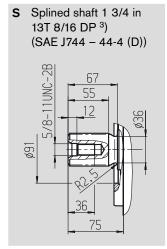

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

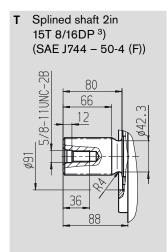
Unit Dimensions, Size 125

Version without control unit NV


Standard: suction port S at bottom (02)


Option: suction port S at top (03): port plate turned through 180°




Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

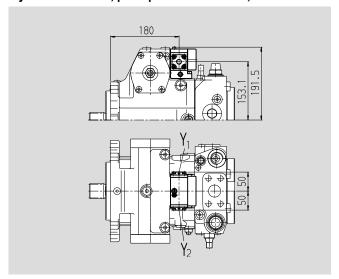
Shaft ends

Ports

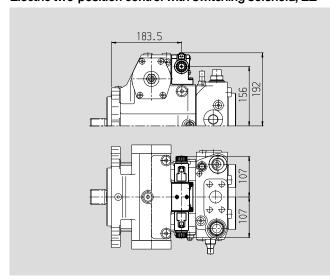
A, B	service line ports (high-pressure series)	SAE J518	1 1/4 in	
	fixing thread A/B	DIN 13	M14x2; 19 deep ²)	
T ₁	case drain or fill	DIN 3852	M33x2; 18 deep	540 Nm ²)
T_2	case drain ⁴)	DIN 3852	M33x2; 18 deep	540 Nm ²)
M_A , M_B	pressure gauge - operating pressure A, B ⁴)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
R	air bleed ⁴)	DIN 3852	M16x1.5; 12 deep	100 Nm ²)
S	boost suction port	DIN 3852	M48x2; 22 deep	960 Nm ²)
X_1, X_2	port for control pressures (before orifice) 4)	DIN 3852	M16x1.5; 12 deep	100 Nm ²)
G	pressure port for auxiliary circuits 4)	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
P_S	control pressure supply ⁴)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
F_{a}	filter output ⁴)	DIN 3852	M33x2; 18 deep	540 Nm ²)
Fa1	filter output (mountable filter) 4)	DIN 3852	M33x2; 18 deep	540 Nm ²)
F_{e}	filter input ⁴)	DIN 3852	M33x2; 18 deep	540 Nm ²)
F_S	port from filter to suction line (cold start) 4)	DIN 3852	M33x2; 18 deep	540 Nm ²)
M_H	port for balanced high pressure ⁴)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
Y_1, Y_2	remote control ports (only HD)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
Z	pilot pressure port (only DA4/8) ⁴)	DIN 3852	M10x1; 8 deep	30 Nm ²)
Υ	pilot pressure port (only DA7)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)

¹⁾ Center bore acc. to DIN 332 (thread acc. to DIN 13)

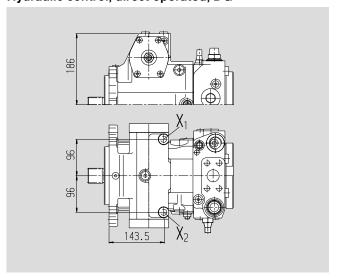
²⁾ Please observe the general notes for the max. tightening torques on page 64

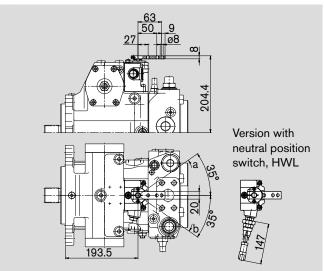

 $^{^{\}rm 3}$) ANSI B92.1a-1976, 30° pressure angle, flat root; side fit, tolerance class 5

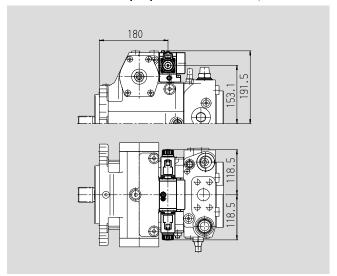
⁴) Plugged

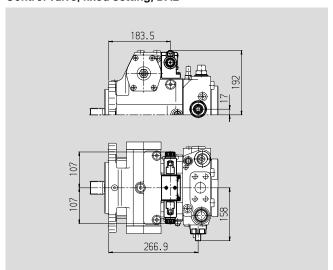

40/64

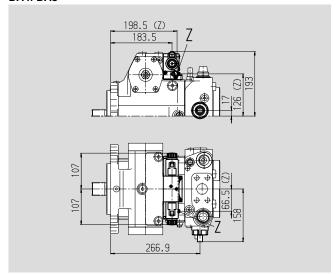
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


Hydraulic control, pilot-pressure related, HD

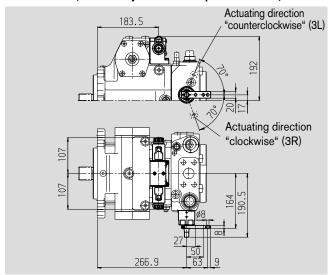

Electric two-position control with switching solenoid, EZ


Hydraulic control, direct operated, DG

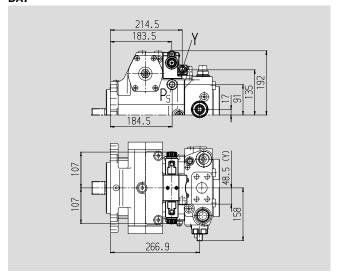

Hydraulic control, mechanical servo, HW


Electric control with proportional solenoid, EP

Hydraulic control, speed related, DA Control valve, fixed setting, DA2



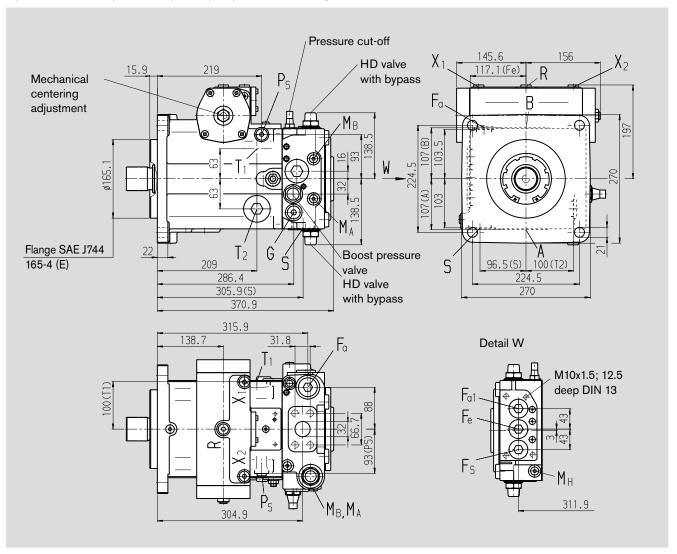
Control valve, fixed setting and hydraulic inch valve mounted, DA4/DA8



Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

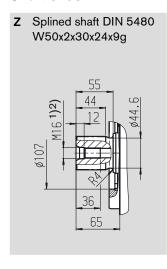
Control valve, mech. adjustable with position lever, DA3

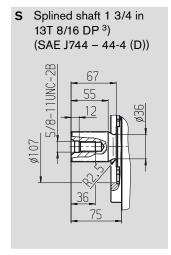
Control valve, fixed setting and ports for pilot control device, DA7

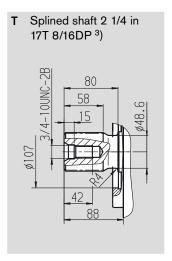

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Unit Dimensions, Size 180

Version without control unit NV


Standard: suction port S at bottom (02)


Option: suction port S at top (03): port plate turned through 180°



Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

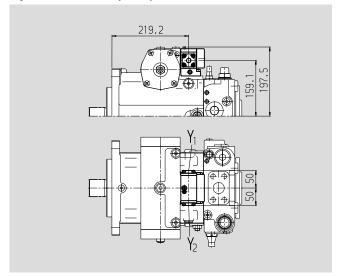
Shaft ends

Ports

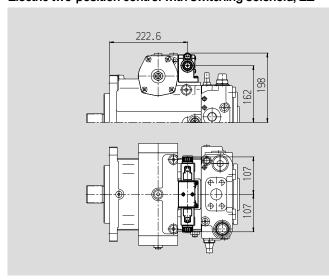
A, B	service line ports (high-pressure series)	SAE J518	1 1/4 in	
	fixing thread A/B	DIN 13	M14x2; 19 deep ²)	
T_1	case drain or fill	DIN 3852	M42x2;20 deep	720 Nm ²)
T_2	case drain ⁴)	DIN 3852	M42x2; 20 deep	720 Nm ²)
M_A,M_B	pressure gauge - operating pressure A/B ⁴)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
R	air bleed ⁴)	DIN 3852	M16x1.5; 12 deep	100 Nm ²)
S	boost suction port	DIN 3852	M48x2; 22 deep	960 Nm ²)
X ₁ , X ₂	ports for control pressure (before orifice) 4)	DIN 3852	M16x1.5; 12 deep	100 Nm ²)
G	pressure port for auxiliary circuits 4)	DIN 3852	M22x1.5; 14 deep	210 Nm ²)
P_S	control pressure supply ⁴)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
F_{a}	filter output ⁴)	DIN 3852	M33x2; 18 deep	540 Nm ²)
F_{a1}	filter output (mountable filter) 4)	DIN 3852	M33x2; 18 deep	540 Nm ²)
F_{e}	filter input ⁴)	DIN 3852	M33x2; 18 deep	540 Nm ²)
F_S	port from filter to suction line (cold start) 4)	DIN 3852	M33x2; 18 deep	540 Nm ²)
M_H	port for balanced high pressure 4)	DIN 3852	M12x1.5; 12 deep	50 Nm ²)
Y ₁ , Y ₂	remote control ports (only HD)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
Z	pilot pressure port (only DA4/8) ⁴)	DIN 3852	M10x1; 8 deep	30 Nm ²)
Υ	pilot pressure port (only DA7)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)

¹⁾ Center bore acc. to DIN 332 (thread acc. to DIN 13)

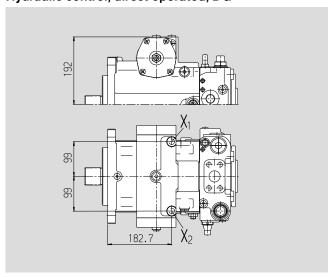
²⁾ Please observe the general notes for the max. tightening torques on page 64

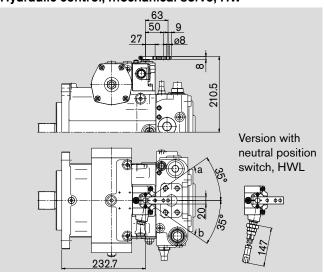

 $^{^{\}rm 3}$) ANSI B92.1a-1976, 30° pressure angle, flat root; side fit, tolerance class 5

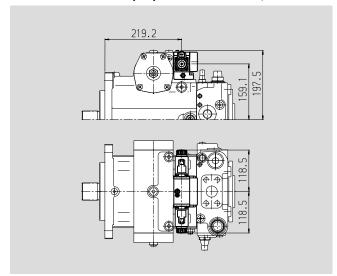
⁴⁾ Plugged


44/64

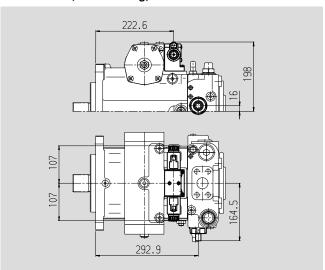
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

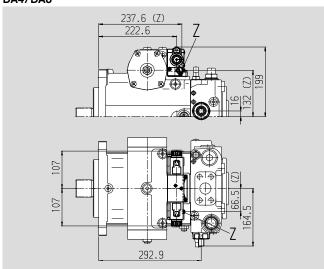

Hydraulic control, pilot-pressure related, HD


Electric two-position control with switching solenoid, EZ

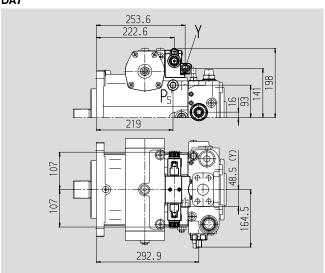

Hydraulic control, direct operated, DG

Hydraulic control, mechanical servo, HW


Electric control with proportional solenoid, EP

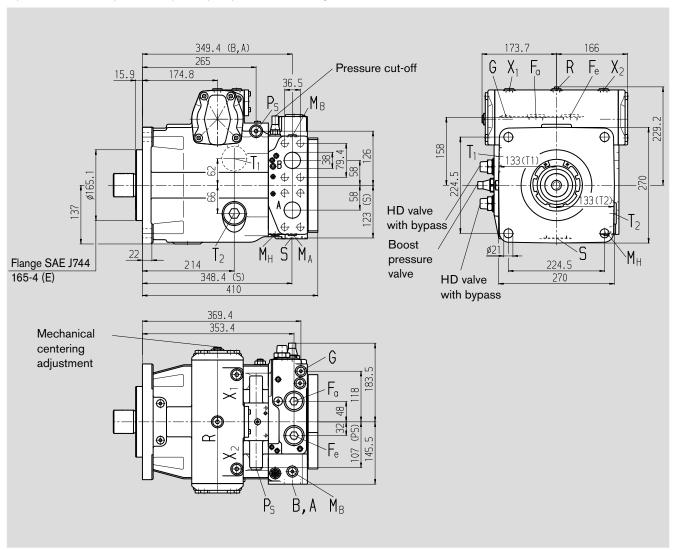

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Unit Dimensions, Size 180


Hydraulic control, speed related, DA Control valve, fixed setting, DA2

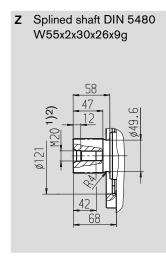
Control valve, fixed setting and hydraulic inch valve mounted, ${\sf DA4/DA8}$

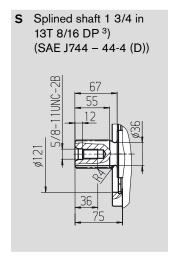
Control valve, fixed setting and ports for pilot control device,

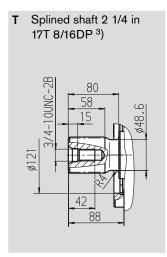

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Unit Dimensions, Size 250

Version without control unit NV


Standard: suction port S at bottom (10)


Option: suction port S at top (13): port plate turned through 180°



Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Shaft ends

Ports

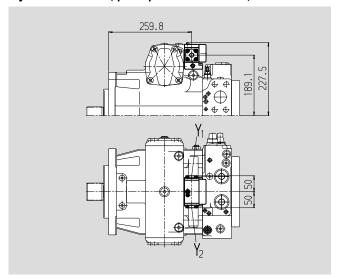
A, B	service line ports (high-pressure series)	SAE J518	1 1/2 in	
	fixing thread A/B	DIN 13	M16x2; 21 deep ²)	
T ₁	case drain or fill	DIN 3852	M42x2; 20 deep	720 Nm ²)
T_2	case drain ⁴)	DIN 3852	M42x2; 20 deep	720 Nm ²)
M_A,M_B	pressure gauge - operating pressure A/B ⁴)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
R	air bleed ⁴)	DIN 3852	M16x1.5; 12 deep	100 Nm ²)
S	boost suction port	DIN 3852	M48x2; 22 deep	960 Nm ²)
X ₁ , X ₂	ports for control pressure (before orifice) 4)	DIN 3852	M16x1.5; 12 deep	100 Nm ²)
G	pressure port for auxiliary circuits 4)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
P_S	control pressure supply 4)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
F_{a}	filter output ⁴)	DIN 3852	M33x2; 18 deep	540 Nm ²)
F_{e}	filter input ⁴)	DIN 3852	M33x2; 18 deep	540 Nm ²)
M_H	port for balanced high pressure 4)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
Y_1, Y_2	remote control ports (only HD)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
Z	pilot pressure port (only DA4/8) 4)	DIN 3852	M10x1; 8 deep	30 Nm ²)
Υ	pilot pressure port (only DA7)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)

¹⁾ Center bore acc. to DIN 332 (thread acc. to DIN 13)

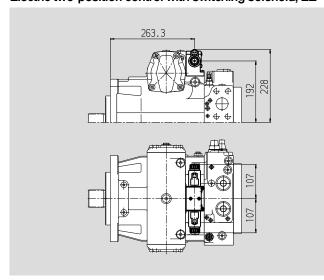
²⁾ Please observe the general notes for the max. tightening torques on page 64

³⁾ ANSI B92.1a-1976, 30° pressure angle, flat root; side fit, tolerance class 5

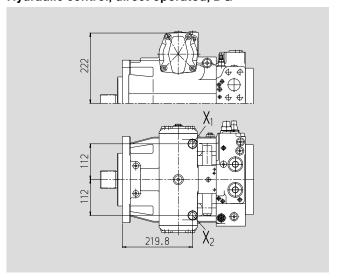
⁴⁾ Plugged

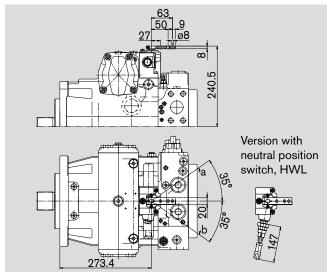

Bosch Rexroth AG A4VG | RE 92003/03.09

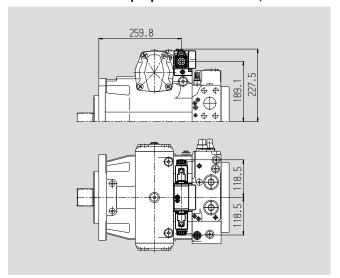
Unit Dimensions, Size 250


48/64

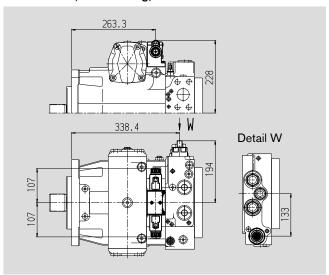
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

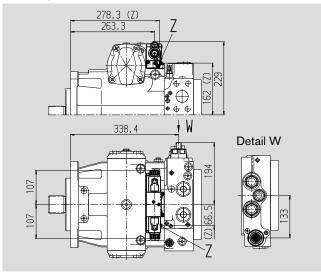

Hydraulic control, pilot-pressure related, HD


Electric two-position control with switching solenoid, EZ

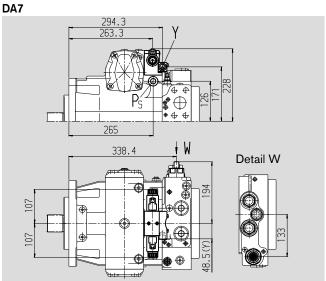

Hydraulic control, direct operated, DG

Hydraulic control, mechanical servo, HW


Electric control with proportional solenoid, EP

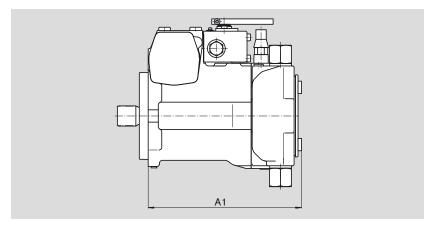

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Unit Dimensions, Size 250


Hydraulic control, speed related, DA Control valve, fixed setting, DA2

Control valve, fixed setting and hydraulic inch valve mounted, DA4/DA8

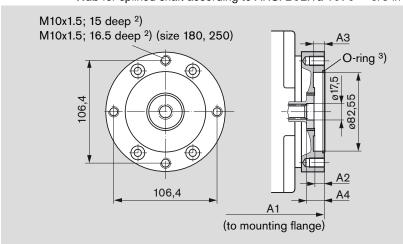
Control valve, fixed setting and ports for pilot control device,



50/64 Bosch Rexroth AG A4VG | RE 92003/03.09

Through Drive Dimensions

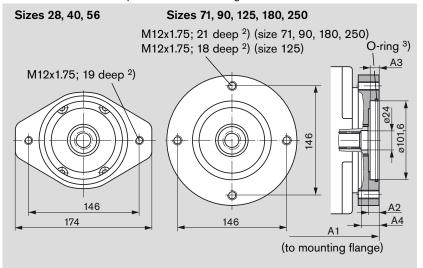
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


N00 Without boost pump, without through drive F00 With boost pump, without through drive

Size	A1 (N00)	A1 (F00)
28	213.9	223.4
40	220.2	235.7
56	239.4	256.4
71	279.1	293.6
90	287	301
125	320.9	326.4
180	370.9	370.9
250	398.2	409

F01/K01 Flange SAE J744 – 82-2 (A)

Hub for splined shaft according to ANSI B92.1a-1976 5/8 in 9T 16/32DP 1) (SAE J744 - 16-4 (A))


Size	A1 (F01)	A1 (K01)	A2	А3	A 4
28	227.9	227.9	7.5	7.5	14.5
40	239.7	234.2	9	9	18
56	261.4	254.9	10	10	18
71	297.6	297.6	9	10	17
90	304	304	9	8	-
125	330.9	330.9	10.5	9	-
180	378.4	378.4	7.5	7.5	15.5
250	426.9	426.2	11	11	18

Shown is the 2-bolt version

Please specify in plain text whether the 2-bolt horizontal or 2-bolt vertical version is used.

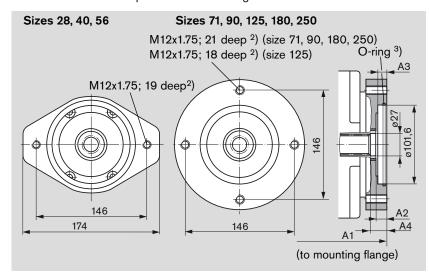
F02/K02 Flange SAE J744 – 101-2 (B)

Hub for splined shaft according to ANSI B92.1a-1976 7/8 in 13T 16/32DP 1) (SAE J744 – 22-4 (B))

Size	A 1	A2	А3	A 4	
28	230.4	9.7	9.7	16.2	
40	240.7	11	11	17	
56	262.4	12	11	19.5	
71	300.6	13	9.8	17	
90	305	9	11	17	
125	330.9	10	11	17	
180	381.4	11	11	19	
250	428.9	11	11	16	

Shown is the 2-bolt version

Please specify in plain text whether the 2-bolt horizontal or 2-bolt vertical version is used.

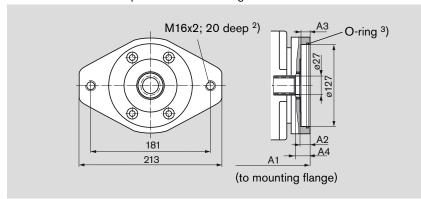

- 1) 30° pressure angle, flat root; side fit, tolerance class 5
- 2) Thread acc. to DIN 13, please observe the general notes for the max. tightening torques on page 64
- 3) O-ring included in supply

Through Drive Dimensions

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

F04/K04 Flange SAE J744 – 101-2 (B)

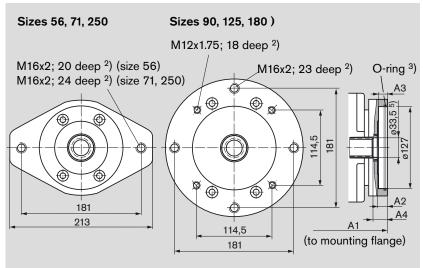
Hub for splined shaft according to ANSI B92.1a-1976 1 in 15T 16/32DP 1) (SAE J744 - 25-4 (B-B))


Size	A1	A2	А3	A 4
28	230.4	9.7	9.7	13.7
40	240.7	11	9.7	16
56	262.4	13	11	18.5
71	300.6	13	9.8	15.5
90	305	9	11	15
125	330.9	10	11	16.5
180	381.4	11	11	18
250	428.9	11	11	15.5

Shown is the 2-bolt version

Please specify in plain text whether the 2-bolt horizontal or 2-bolt vertical version is used.

F09/K09 Flange SAE J744 – 127-2 (C)


Hub for splined shaft according to ANSI B92.1a-1976 1 in 15T 16/32DP 1) (SAE J744 – 25-4 (B-B))

Size	A1	A2	А3	A4
40	244.7	14	14	19.5

F07/K07 Flange SAE J744 - 127-2 (C)

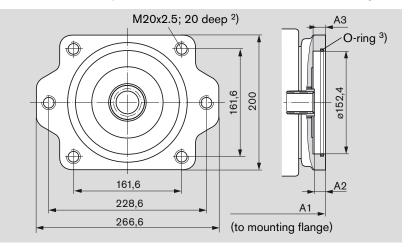
Hub for splined shaft according to ANSI B92.1a-1976 1 1/4 in 14T 12/24DP 1) (SAE J744 – 32-4 (C))

Size	A 1	A2	А3	A 4
56	266.4	15	14	17.5
71	303.6	15	13.5	20
90	309	13	14	20.5
125	335.9	15	15.5	22.5
180	384.4	14	19	17
250	425.9	16	14	16

Shown is the 4-bolt and 2-bolt version

Please specify in plain text whether the 4-bolt, 2-bolt horizontal or 2-bolt vertical version is used.

- 1) 30° pressure angle, flat root; side fit, tolerance class 5
- 2) Thread acc. to DIN 13, please observe the general notes for the max. tightening torques on page 64
- 3) O-ring included in supply
- 4) Size 180 only with SAE 2-bolt flange
- 5) Size 56: ø32.7

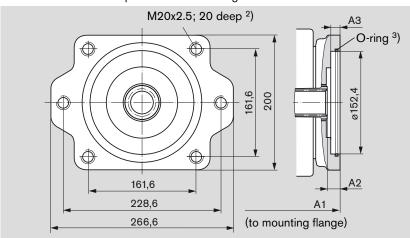

52/64 Bosch Rexroth AG A4VG | RE 92003/03.09

Through Drive Dimensions

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

F73/K73 Flange SAE J744 - 152-2/4 (D)

Hub for splined shaft acc. to DIN 5480 W35x2x30x16x9g

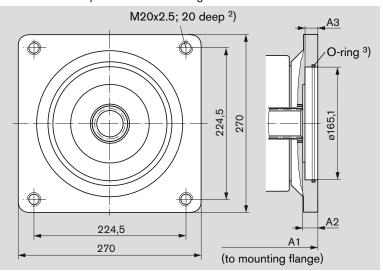

Size		A2	А3	
90	309	12	14	

Shown is the 4+2-bolt version

Please specify in plain text whether the 2-bolt, 4-bolt or 4+2-bolt version is used.

F69/K69 Flange SAE J744 - 152-2/4 (D)

Hub for splined shaft according to ANSI B92.1a-1976 1 3/4 in 13T 8/16DP 1) (SAE J744 – 44-4 (D))


Size	A1	A2	А3	
125	343.9	18	14	
180	391.9	20.9	18	
250	444.9	9	17	

Shown is the 4+2-bolt version

Please specify in plain text whether the 2-bolt, 4-bolt or 4+2-bolt version is used.

F72/K72 Flange SAE J744 – 165-4 (E)

Hub for splined shaft according to ANSI B92.1a-1976 1 3/4 in 13T 8/16DP 1) (SAE J744 – 44-4 (D))

Size	A1	A2	A3
180	391.9	20.9	18
250	444.9	9	17

- 1) 30° pressure angle, flat root; side fit, tolerance class 5
- 2) Thread acc. to DIN 13, please observe the general notes for the max. tightening torques on page 64
- 3) O-ring included in supply

Overview of Attachments on A4VG

Through o	lrive – A4	VG								Through drive
Flange	Hub for splined shaft	Code	A4VG Size (shaft)	A10V(S)O/31 Size (shaft)	A10V(S)O/53 Size (shaft)	A4FO Size (shaft)	A11VO Size (shaft)	A10VG Size (shaft)	External gear pump	Available for size
82-2 (A)	5/8 in	F/K01	_	18 (U)	10 (U)	-	_	_	Size F Size 4-22 ¹)	28250
101-2 (B)	7/8 in	F/K02	_	28 (S,R)	28 (S,R)	16 (S) 22 (S)	-	18 (S)	Size N Size 20-32 ¹)	28250
				45 (U)	45 (U,W)	28 (S)			Size G Size 38-45 ¹)	
	1 in	F/K04	28 (S)	45 (S,R)	45 (S,R) 60 (U,W)	_	40 (S)	28 (S) 45 (S)	-	28250
127-2 (C)	1 in	F/K09	40 (U)	-	-	-	-	-	-	40
	1 1/4 in	F/K07	40 (S), 56 (S) 71 (S)	71 (S,R) 100 (U)	85 (U)	-	60 (S)	63 (S)	-	56250
152-2/4 (D)	W35	F/K73	90 (Z)	-	-	-	-	-	-	90
	1 3/4 in	F/K69	90 (S) 125 (S)	140 (S)	_	_	95 (S) 130 (S)	_	_	125250
165-4 (E)	1 3/4 in	F/K72	180 (S) 250 (S)	_	-	-	190 (S) 260 (S)	-	-	180250

¹⁾ Rexroth recommends special gear pump versions. Please contact us.

Combination Pumps A4VG + A4VG

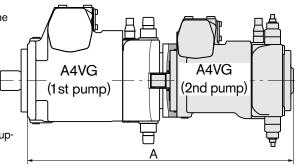
Overall length A

A4VG				A4VG (2n	d pump) 1)			
(1st pump)	Size 28	Size 40	Size 56	Size 71	Size 90	Size 125	Size 180	Size 250
Size 28	453.8	_	-	_	-	-	_	-
Size 40	464.1	480.4	-	_	_	_	_	_
Size 56	485.8	502.1	522.8	_	_	-	_	-
Size 71	524.0	539.3	560.0	597.2	-	_	-	-
Size 90	528.4	544.7	565.4	602.6	610.0	-	-	-
Size 125	554.3	571.6	592.3	629.5	644.9	670.3	=	=
Size 180	604.8	620.1	640.8	678.0	692.9	718.3	762.8	_
Size 250	652.3	661.6	682.3	719.5	745.9	771.3	815.8	854.8

1) 2nd pump without through drive and with boost pump, F00

Combination pumps make it possible to have independent circuits without the need to fit splitter gearboxes.

When ordering combination pumps, the type designations of the 1st and 2nd pumps must be linked by a "+".


Example of order:

A4VG56EP3D1/32R-NAC02F073SP + A4VG56EP3D1/32R-NSC02F003SP

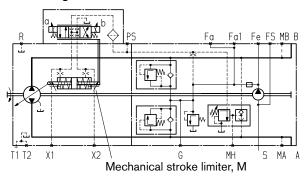
A tandem pump combined of two equal sizes is permissible without additional supports where the dynamic acceleration does not exceed max. 10 g (= 98.1 m/s²).

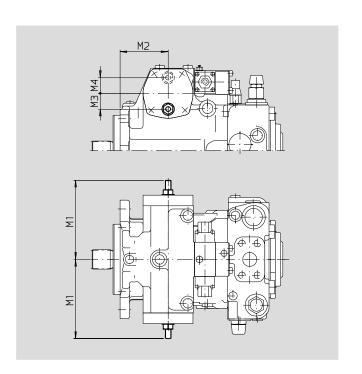
We recommend the use of 4-bolt mounting flanges from size 71 and larger.

For combination pumps consisting of more than two pumps, the mounting flange must be rated for the permissible mass torque.

54/64 Bosch Rexroth AG A4VG | RE 92003/03.09

Mechanical Stroke Limiter, M

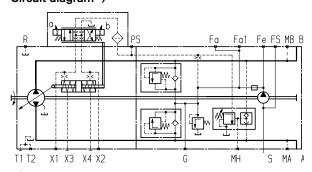

The mechanical stroke limiter is an additional function allowing continuous reduction of the maximum displacement of the pump, regardless of the control unit used.


The stroke of the stroke cylinder and hence the maximum swivel angle of the pump are limited by means of two adjusting screws.

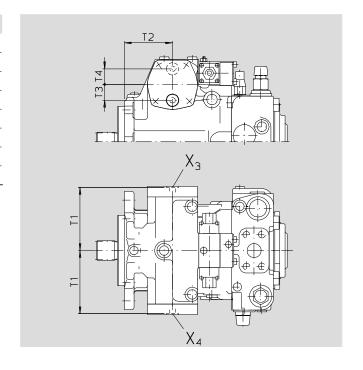
Dimensions

Size	M1	M2	М3	M4
28	110.6 max.	40.1	24	-
40	110.6 max.	38.1	24	-
56	130.5 max.	44	25.5	_
71	135.4 max.	86.3	_	28.5
90	147 max.	95.7	31.5	_
125	162 max.	104.5	_	35.5
180	181.6 max.	138.7	38	-
250	198.9 max.	174.8	39.5	_

Circuit diagram 1)



Ports X₃ and X₄ for Positioning Pressure, T


Dimensions

Size	T1	T2	Т3	T4	X ₃ , X ₄
28	92	40.1	_	24	M12x1.5
40	92	38.1	_	24	M12x1.5
56	104.5	44	_	25	M12x1.5
71	113.5	86.3	28	_	M12x1.5
90	111.5	95.7	-	30	M12x1.5
125	136	104.5	34	_	M12x1.5
180	146.5	138.7	_	35	M12x1.5
250	164.5	174.8	_	38	M16x1.5

Circuit diagram 1)

 $^{1}\!)$ Size 28 and 250 without port F_{a1} and F_{S}

Filtration Types

Standard: Filtration in the suction line of the boost pump, S

Standard version (preferred)

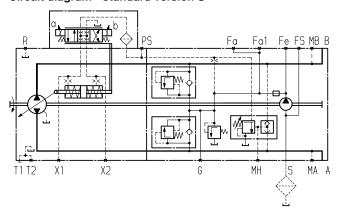
Filter type: _____filter without bypass

Recommendation: _____with contamination indicator

Flow resistance at the filter element:

at
$$\nu=30~\text{mm}^2/\text{s},\, n=n_{\text{max}}$$
 ______ $\Delta p \leq 0.1~\text{bar}$

at
$$\nu = 1000 \text{ mm}^2/\text{s}, \, n = n_{\text{max}}$$
 _____ $\Delta p \leq 0.3 \text{ bar}$


Pressure at port S of the boost pump:

at
$$v = 30 \text{ mm}^2/\text{s}$$
 _____p $\geq 0.8 \text{ bar}$

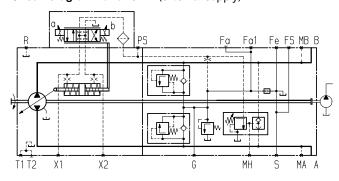
at cold start (v = 1600 mm²/s, n
$$\leq$$
 1000 rpm) $_p \geq$ 0.5 bar

Filter is not included in supply.

Circuit diagram - standard version S

Variation: External supply, E

This variation should be used in versions **without** integral boost pump (N00 or K...).


Port S is plugged.

Supply comes from port Fa.

Filter arrangement: ______separate

For functional reliability ensure required cleanliness level for the boost pressure fluid at port F_a (see page 6).

Circuit diagram variation E (external supply)

Variation:

Filtration in the pressure line of the boost pump, ports for external boost circuit filter, D

Filter input: Port F_e

Filter output: Port F_a

Filter type: Filter with bypass are **not recommended**.

When applying with bypass please consult us.

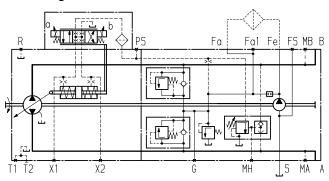
Recommendation: with contamination indicator

Note:

For versions with **DG** control (with pilot-pressure not from boost circuit), the following filter type should be employed:

Filter with bypass and with contamination indicator

Filter arrangement: separately in the pressure line (line filter)


Flow resistance at the filter element:

at $v = 30 \text{ mm}^2/\text{s}$ $\Delta p \le 1 \text{ bar}$ for cold start $\Delta p \le 3 \text{ bar}$

(valid for entire speed range $n_{min} - n_{max}$)

Filter is not included in supply.

Circuit diagram variation D

Bosch Rexroth AG A4VG | RE 92003/03.09

Filtration Types

Variation:

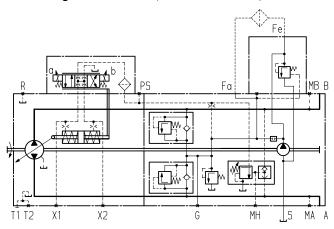
56/64

Filtration in the pressure line of the boost pump, with cold start valve and ports for external boost circuit filter, K

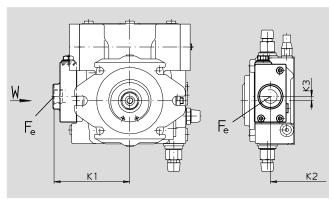
Version similar to variation D, however additionally with cold start valve:

 Port plate is equipped with cold start valve and therefore protects the pump from damage.

The valve opens at flow resistance $\Delta p \ge 6$ bar.


Port Fe: Filter input (at the cold start valve)

Port Fa: Filter output


Filter arrangement ______separately in the pressure line (line filter)

Filter is not included in supply.

Circuit diagram variation K (with cold start valve)

Dimensions variation K (with cold start valve)

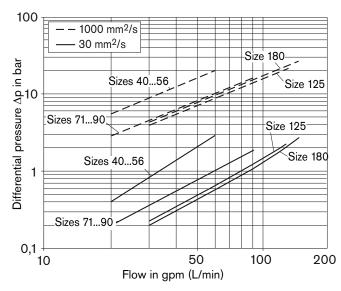
Size	K 1	K2	КЗ	F _e ¹)	T _{max.} ²)
40	122.5	198.7	0	M18x1.5; 15 deep	140 Nm
56	125.5	215.4	0	M18x1.5; 15 deep	140 Nm
71	145.5	239.0	8	M26x1.5; 16 deep	230 Nm
90	139.5	248.5	24	M26x1.5; 16 deep	230 Nm
125	172.0	267.9	20	M33x2; 18 deep	540 Nm
180	173.0	311.9	3	M33x2; 18 deep	540 Nm

¹⁾ DIN 3852

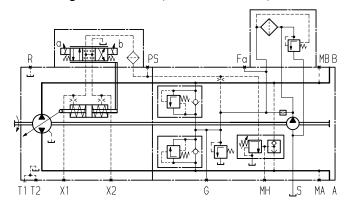
Variation:

Filtration in pressure line of boost pump, filter mounted, supplied, F

Filter type	filter without bypass
Filter grade (absolute)	20 microns
Filter material	glass fiber
Pressure capacity	100 bar
Filter arrangement	connected to pump


Note:

 Port plate is equipped with cold start valve and therefore protects the pump from damage.
 The valve opens at flow resistance Δp ≥ 6 bar.


Recommendation: with contamination indicator (variation P, L, M, B) (differential pressure $\Delta p = 5$ bar)

Filter characteristic

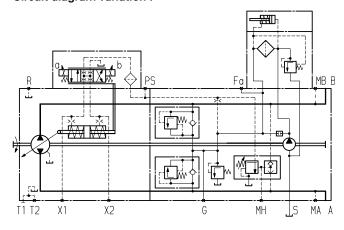
Differential pressure/volumetric flow characteristics conforming to ISO 3968 (valid for new filter element).

Circuit diagram variation F (with mountable filter)

Please observe the general notes for the max. tightening torques on page 64

Filtration Types

Variation:


Filtration in pressure line of the boost pump, filter mounted, supplied, with visual contamination indicator, P

Version similar to variation F, however additionally with visual contamination indicator.

Indication: green/red window

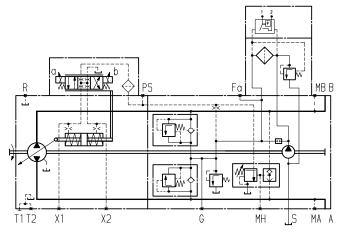
Differential pressure (switching pressure) $\Delta p = 5$ bar

Circuit diagram variation P

Variation:

Filtration in the pressure line of the boost pump, filter mounted, supplied,

with Electric contamination indicator with DEUTSCH connector, B

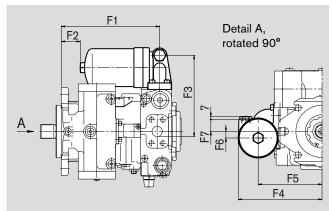

Version similar to variation F, however additionally with Electric contamination indicator.

Indication: Electric

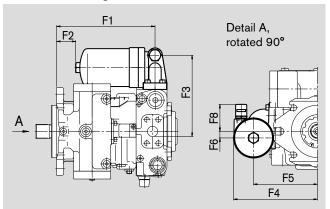
Differential pressure (switching pressure) $\Delta p = 5$ bar

Max. switching power at 24 V DC ______ 60 W

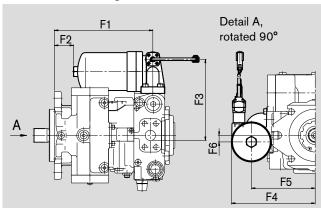
Circuit diagram variation B



58/64 Bosch Rexroth AG A4VG | RE 92003/03.09


Filtration Types

Dimensions with mountable filter


Variation F

Variation P: viewing window

Variation B: electr. signal with DEUTSCH connector

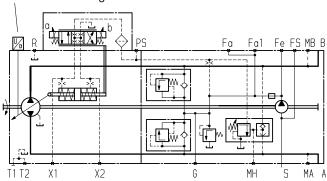
Size	F1	F2	F3	F4	F5	F6	F7	F8
40	201.7	47.7	160	175	135	0	42	78.5
56	218.4	64.4	163	178	138	0	42	78.5
71	239	46.5	185	203.5	155	16	29	65.5
90	248.5	56	179	197.5	149	0	45	81.5
125	235.9	59.4	201	219.5	171	0	53	89.5
180	279.9	40.3	202	220.4	171.9	17	36	72.5

Swivel Angle Indicator

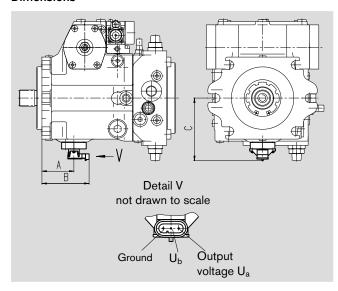
Electric swivel angle sensor, R

For swivel angle indicator, the pump swivel position is measured by an electric swivel angle sensor. The sensor has a robust, sealed case and a built-in electronic specially developed for automotive applications.

As an output parameter, the hall effect swivel angle sensor delivers a voltage proportional to the swivel angle (see table of output voltages).


Technical Data				
Supply voltage U _b	1030 V DC			
Output voltage U _a	0,5 V (V _{g max a})	2,5 V (V _{g 0})	4,5 V (V _{g max b})	
Reserve-connect protection	Shor	t circuit-resi	stant	
EMC resistance	Det	ails on requ	uest	
Operating temperature range	-40	°C+125	°C	
Vibration resistance sinusoidal vibration EN 60068-2-6	10 <i>g /</i> 52000 Hz			
Shock resistance: continuous shock IEC 68-2-29		25 <i>g</i>		
Salt spray resistance (DIN 50 021-SS)		96h		
Type of protection DIN/EN 60529	IP	37 and IP6	9K	
Case material		Plastic	·	

Output voltage


Direction of	Direction of	Output voltage		
rotation	through put flow	at V_{g0}	at $V_{g\;max}$	
clockwise	A to B	2.5 V	4.5 V	
	B to A	2.5 V	0.5 V	
counter-	B to A	2.5 V	4.5 V	
clockwise	A to B	2.5 V	0.5 V	

Circuit diagram

Electric swivel angle sensor

Dimensions

Size	Α	В	С
28	56.6	94	119
40	58.6	96	119
56	60.5	97.5	128.5
71	71.6	108.6	137.5
90	70.7	107.7	145.5
125	78	115	152.5
180	100.7	137.7	153.5
250	105.1	142.1	180.5

Mating connector

AMP Superseal 1.5; 3-pin, Rexroth mat. no. R902602132

comprising:	AMP no.
- 1 socket case, 3-pins	282087-1
- 3 single wire seal, yellow	_281934-2
- 3 socket contact 1.8 - 3.3 mm	283025-1

The mating connector is not included in supply. This can be supplied by Rexroth on request.

Connector for Solenoids (Only for EP, EZ, DA)

DEUTSCH DT04-2P-EP04, 2-pin

Molded, without bi-directional suppressor diode (standard) _P

Molded, with bi-directional suppressor diode (only for switching solenoids on control unit EZ1/2, DA) ____Q

Type of protection according to DIN/EN 60529: IP67 and IP69K

The protection circuit with a bi-directional suppressor diode is necessary for limiting overvoltages. Overvoltages are generated by disconnecting the current using switches, relay contacts or by unplugging an energized mating connector.

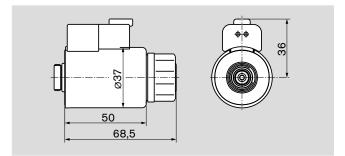
Circuit symbol

without bi-directional suppressor diode

with bi-directional

Mating connector

DEUTSCH DT06-2S-EP04 Rexroth Mat. No. R902601804


 consisting of:
 DT designation

 - 1 case
 DT06-2S-EP04

 - 1 wedge
 W2S

 - 2 sockets
 0462-201-16141

The mating connector is not included in supply. This can be supplied by Rexroth on request.

Note for round solenoids:

The position of the connector can be changed by turning the solenoid body.

Proceed as follows:

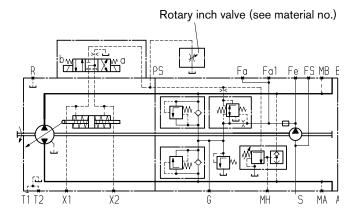
- 1. Loosen the fixing nut (1)
- 2. Turn the solenoid body (2) to the desired position
- Tighten the fixing nut
 Tightening torque of the fixing nut: 5⁺¹ Nm (width across flats WAF26, 12-sided DIN 3124)

Rotary Inch Valve

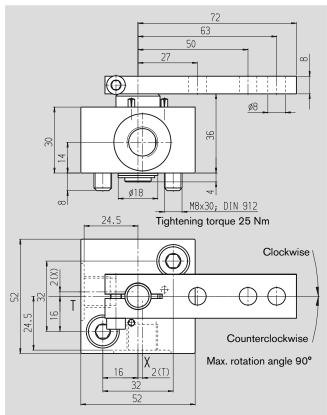
The rotary inch valve permits the control pressure to be reduced independent from the drive speed through the mechanical operation of the actuating lever. Maximum rotation angle 90°. The lever may be fixed in any position.

The valve is mounted separately from the pump and connected with a pump by the hydraulic control line at port P_S (max. line length approximately 2 meters).

The rotary inch valve must be ordered separately.


Size	Material no.	Direction of actuation of position lever
28, 40, 56, 71, 90	R902048734 R902048735	clockwise counterclockwise
125	R902048740 R902048741	clockwise counterclockwise
180, 250	R902048744 R902048745	clockwise counterclockwise

Attention:


The rotary inch valve can be used independently from the control unit.

Circuit diagram:

hydraulic control, speed related, DA with separate rotary inching valve

Unit dimensions

Ports

Χ	pressure port DIN 3852	M14x1.5; 12 deep	80 Nm ¹)
T	drain tank DIN 3852	M14x1.5; 12 deep	80 Nm ¹)

 Please observe the general notes for the max. tightening torques on page 64

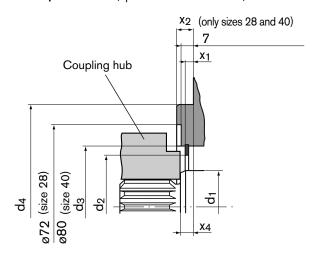
Installation Situation for Coupling Assembly

To ensure that rotating components (coupling hub) and fixed components (case, retaining ring) do not come into contact with each other, the installation conditions described here must be observed. This depends on the size and the splined shaft.

Size 28 and 40 (with free turning):

SAE and DIN splined shaft
 Please observe diameter of the free turning (size 28: ø72, size 40: ø80).

Size 56 to 250 (without free turning):


- SAE splined shaft (shaft S or T)
 - The outer diameter of the coupling hub must be smaller than the inner diameter of the retaining ring \mathbf{d}_2 at the zone of the drive shaft collar (measure $\mathbf{x}_2 \mathbf{x}_3$).
- DIN splined shaft (shaft Z or AT)

The outer diameter of the coupling hub must be smaller than the case diameter \mathbf{d}_3 at the zone of the drive shaft collar (measure $x_2 - x_4$).

SAE splined shaft (spline acc. to ANSI B92.1a-1976)

Coupling hub Coupling hub X2 (only sizes 28 and 40) 7 X1 Coupling hub X2 (only sizes 28 and 40)

DIN splined shaft (spline acc. to DIN 5480)

Size	ød ₁	ød _{2 min}	ød ₃	ød ₄	x ₁	\mathbf{x}_2	X 3	x ₄
28	35	43.4	55 ±0.1	101.6	3.3 +0.2	9.5 _0.5	8 ^{+0.9} _{-0.6}	10 +0.9 -0.6
40	40	51.4	63 ±0.1	127	4.3 +0.2	12.70.5	8 ^{+0.9} _{-0.6}	10 +0.9 -0.6
56	40	54.4	68 ±0.1	127	7.0 +0.2	12.70.5	8 ^{+0.9} _{-0.6}	10 +0.9 -0.6
71	45	66.5	81 ±0.1	127	7.0 +0.2	12.70.5	8 ^{+0.9} -0.6	10 +0.9 -0.6
90	50	66.5	81 ±0.1	152.4	6.8 +0.2	12.70.5	8 ^{+0.9} _{-0.6}	10 +0.9 -0.6
125	55	76.3	91 ±0.1	152.4	7.0 +0.2	12.70.5	8 ^{+0.9} _{-0.6}	10 +0.9 -0.6
180	60	88	107 ±0.1	165.1	7.4 +0.2	15.9 _{-0.5}	8 ^{+0.9} -0.6	10 +0.9 -0.6
250	75	104.6	121	165.1	6.3 ^{+0.2}	15.9 _{-0.5}	8 ^{+0.9} _{-0.6}	10 ^{+0.9} _{-0.6}

Installation Notes

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This is also to be observed following a relatively long standstill as the system may empty via the hydraulic lines.

The pump case drain connection (i.e.- T_1/T_2) must be directed to the tank via the highest case drain port. The minimum suction pressure at port S must not fall below 0.8 bar abs. (cold start 0.5 bar absolute).

In all operating states, the suction line and case drain line must flow into the tank below the minimum fluid level.

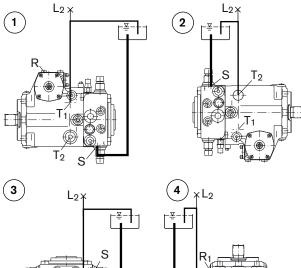
Installation position

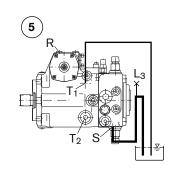
See examples below. Additional installation positions are available upon request.

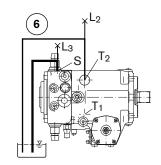
Note:

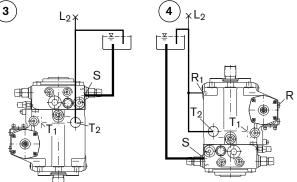
With size 71...250, installation position "shaft at top" must be specified at time of order (pump is supplied with additional vent port R₁ in flange area).

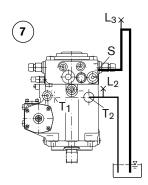
Below-tank installation (standard)

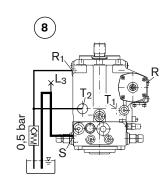

Pump below the minimum fluid level of the tank.


Recommended installation positions: 1 and 2.


Above-tank installation


Pump above the min. fluid level of the tank


Observe the maximum permissible suction height $h_{max} = 800$ mm. Recommendation for installation position 8 (shaft upwards): A check valve in the case drain line (opening pressure 0.5 bar) can prevent draining of the case interior.



Installation position	Air bleeding	Filling
1	R	S + T ₁ (L ₂₎
2	L ₂	S + T ₂ (L ₂)
3	L_2	S + T ₂ (L ₂)
4	R + L ₂ (size 28 - 56)	S + T ₂ (L ₂)
	R ₁ +L ₂ (size 71-250)	

Installation position	Air bleeding	Filling
5	R	$T_1 + (L_3)$
6	L ₂	S (L ₃) + T ₂ (L ₂)
7	L ₂ + L ₃	S (L ₃) + T ₂ (L ₂)
8	R + L ₃ (size 28 - 56) R ₁ +L ₃ (size 71-250)	S (L ₃) + T ₂

Bosch Rexroth AG A4VG | RE 92003/03.09

General Notes

64/64

- The A4VG pump is designed to be used in closed circuits.
- Project planning, assembly and commissioning of the pump require the involvement of qualified personnel.
- The service line ports and function ports are only designed to accommodate hydraulic lines.
- During and shortly after operation, there is a risk of burns on the pump and especially on the solenoids. Take suitable safety
 precautions, e.g. wear protective clothing
- There may be shifts in the characteristic depending on the operating state of the pump (operating pressure, fluid temperature).
- Tightening torques:
 - The tightening torques specified in this data sheet are maximum values and must not be exceeded (maximum values for screw thread).
 - Manufacturer's instruction for the max. permissible tightening torques of the used fittings must be observed!
 - For DIN 13 fixing screws, we recommend checking the tightening torque individually according to VDI 2230 Edition 2003.
- The data and information contained herein must be adhered to.

Bosch Rexroth AG
Hydraulics
Axial Piston Units
Glockeraustraße 2
89275 Elchingen, Germany
Telephone +49 (0) 73 08 82-0
Fax +49 (0) 73 08 72 74
info.brm-ak@boschrexroth.de
www.boschrexroth.com/axial-piston-pumps

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.