Axial Piston Variable Motor A6VM

RE 91604/03.09 1/76 Replaces: 09.07

Data sheet

Series 6

Size Nominal pressure/Peak pressure

28 to 200 400 bar/450 bar 250 to 1000 350 bar/400 bar

Open and closed circuits

Contents

2 Ordering Code / Standard Program 5 Technical Data HD - Hydraulic Control, Pilot-Pressure Related 9 HZ - Hydraulic Two-Point Control 12 EP - Electric Control with Proportional Solenoid 13 EZ - Electric Two-Point Control, With Switching Solenoid 16 HA - Automatic Control, High-Pressure Related 17 DA - Hydraulic Control, Speed Related 22 Electric Travel Direction Valve (for DA, HA.R) 24 Unit Dimensions, Size 28 26 30 Unit Dimensions, Size 55 Unit Dimensions, Size 80 34 38 Unit Dimensions, Size 107 42 Unit Dimensions, Size 140 46 Unit Dimensions, Size 160 Unit Dimensions, Size 200 50 54 Unit Dimensions, Size 250 Unit Dimensions, Size 355 57 Unit Dimensions, Size 500 60 Unit Dimensions, Size 1000 63 Flush and Boost Pressure Valve 66 BVD Counterbalance Valve (Sizes 55...160) 68 Swivel Angle lindicator (Sizes 250...1000) 71 72 Speed Measurement (Sizes 28...500) Connectors for Solenoids (for EP, EZ, HA.U, HA.R, DA only) 74 Installation Instructions 75 General Instructions 76

Features

- Variable motor with an axial tapered piston rotary group of bent-axis design for hydrostatic drives in open and closed circuits
- For use in mobile and stationary application areas
 - The wide control range enables the variable motor to satisfy the requirement for high speed and high torque.
 - The displacement is infinitely variable from $V_{g max}$ to $V_{g min} = 0$.
 - The output speed depends on the flow of the pump and the displacement of the motor.
 - The output torque increases with the pressure differential between the high and low pressure side and with increasing displacement.
 - Wide control range with hydrostatic transmission
 - Wide selection of control devices
 - Cost savings through elimination of gear shifts and possibility of using smaller pumps
 - Compact, robust bearing system with long service life
 - High power density
 - Good starting characteristics
 - Low moment of inertia

Ordering Code / Standard Program

DA6

	A6V		M					/	63	W		ı	٧								-	
01	02	03	04	05	06	07	08		09	10	11		12	13	14	15	16	17	18	19		20

Hvd	Irau	lıc.	tlı	IIC

	Mineral oil and HFD. HFD for size	es 250 to 1000 only in combination with long-life bearing "L" (without code)	
01	HFB, HFC hydraulic fluid	Sizes 28 to 200 (without code)	
		Sizes 250 to 1000 (only in combination with long-life bearing "L")	Е

Axial piston unit

02 Bent-axis design, variable

Drive shaft bearing	28200	250	355	500	1000	1
Standard bearing (without code)	•	•	•	•	-	
Long-life bearing	_	•	•	•	•	L

Operation mode

04 Motor (plug-in-motor A6VE see RE 91606)

Size

3120														
$ \approx \text{Displacement V}_{\text{g ma}}$, in cm ³		28	55	80	107	140	160	200	250	355	500	1000	
Control device			28	55	80	107	140	160	200	250	355	500	1000	
Hydraulic control,	Δp =	= 10 bar	•	•	•	•	•	•		•	•	•	•	HD
pilot-pressure related	<u>Δp</u> =	= 25 bar	•	•	•	•	•	•	•	•	•	•	•	HD
	<u>Δp</u> =	= 35 bar	-	-	-	-	-	-	-	•	•	•	•	HD
Hydraulic two-point c	ontrol		-	-	-	-	-	-	-	•	•	•	•	HZ
			•	-	-	-	•	•	•	-	-	-	-	HZ
			_	•	•	•	-	-	-	_	-	-	-	HZ
Electric control, prop	ortional	12V	•	•	•	•	•	•	•	•	•	•	•	EP
		24V	•	•	•	•	•	•	•	•	•	•	•	ΕP
Electric two-point cor	ntrol	12V	•	-	-	-	•	•	•	•	•	•	•	ΕZ
		24V	•	-	-	-	•	•	•	•	•	•	•	EZ
		12V	-	•	•	•	-	-	-	-	-	-	-	EZ
06		24V	_	•	•	•	-	_	-	_	-	-	-	ΕZ
Automatic control,	Without pressure increase		•	•	•	•	•	•	•	•	•	•	•	НА
high-pressure related	With pressure increase $\Delta p = 10^{-1}$	00 bar	•	•	•	•	•	•	•	•	•	•	•	НА
Hydraulic control, spe	eed related													
$p_{St}/p_{HD} = 3/100,$	Hydraulic travel direction valve		_	-	-	-	_	_	_		•	•	О	DA
$p_{St}/p_{HD} = 5/100,$	Hydraulic travel direction valve		•	•	•	•	•	•	•	-	-	-	-	DA
	Electric travel direction valve	12V	•	•	•	•	•	•	•	-	-	-	-	DA
	$+$ electric $V_{g max}$ control	24V	•	•	•	•	•	•	•	-	-	-	-	DA
$p_{St}/p_{HD} = 8/100,$	Hydraulic travel direction valve		•	•	•	•	•	•	•	-	-	-	-	DA
	Electric travel direction valve	12V	•	•	•	•	•	•	•	-	-	-	_	DA

	Pressure control (only	for HD, EP)	28	55	80	107	140	160	200	250	355	500	1000	
	Without pressure contro	ol (without code)	•	•	•	•	•	•	•	•	•	•	•	
07	Pressure control,	Direct	•	•	•	•	•	•	•	•	•	•	•	D
07		Direct, with 2nd pressure setting	•	•	•	•	•	•	•	1)	1)	1)	1)	Е
		Remote	-	_	_	-	_	_	_	•	•	•	•	G

+ electric $V_{g\ max}$ control

Ordering Code / Standard Program

	A6V		М					/	63	W		_	V								-	
01	02	03	04	05	06	07	08		09	10	11		12	13	14	15	16	17	18	19		20

	Overriding HA control (for HA1, HA2 only)		28	55	80	107	140	160	200	250	355	500	1000	
	Without override (without code)		•	•	•	•	•	•	•	•	•	•		
	Hydraulic override		•	•	•	•	•	•	•	•	•	•	•	Т
	Electric override	12V	•	•	•	•	•	•	•	-	-	-	-	U1
80		24V	•	•	•	•	•	•	•	-	-	-	- 1	U2
	Electric override	12V	•	•	•	•	•	•	•	-	-	-	- 1	R1
	+ electric travel direction valve	24V								_	_	_		R2

Series

09 Series 6, index 3 63

Direction of rotation

10 Viewed from shaft end, alternating

	Setting range for displacement 2		28	55	80	107	140	160	200	250	355	500	1000	
	$V_{g min} = 0$ to 0.7 $V_{g max}$ (without cod	de)	•	•	•	•	•	•	•	-	-	ı	-	
11	$V_{g min} = 0$ to 0.4 $V_{g max}$	$V_{g max} = V_{g max}$ to 0.8 $V_{g max}$	ı	ı	-	_	-	ı	-	•	•	•	•	1
	$V_{g min}$ $>$ 0.4 $V_{g max}$ to 0.8 $V_{g max}$	$V_{g max} = V_{g max}$ to 0.8 $V_{g max}$	-	-	-	-	-	-	_	•	•	•	•	2

12 FKM (fluor-caoutchouc) ٧

	Shaft end	28	55	80	107	140	160	200	250	355	500	1000		
	Splined shaft DIN 5480	•	•	•	•	-	•	•	_	ı	ı	ı	Α	
13		•	•	•	•	•	•	_	•	•	•	•	Z	
	Parallel keyed shaft DIN 6885	-	-	-	-	-	-	-	•	•	•	•	Р	

	Mounting flange	28	55	80	107	140	160	200	250	355	500	1000	
4.4	4-hole - ISO 3019-2	•		•	•	•	•	•	•	-	-	-	В
14	8-hole - ISO 3019-2	-	-	_	-	-	_	_	_	•	•	•	Н

	Service line ports 3)			28	55	80	107	140	160	200	250	355	500	1000	
	SAE flange ports	01	0	•	•	•	•	•	•	•	•	•	•	•	010
	A/B, rear		7	•	•	•	•	•	•	•	•	•	•	•	017
	SAE flange ports	02	0	•	•	•	•	•	•	•	•	•	•	•	020
	A/B side, opposite		7	•	•	•	•	•	•	•	•	•	•	•	027
15	Port plate for mounting a counterbalance valve on request	08	0	-	-	-	-	-	-	-	0	-	-	-	080
	SAE flange ports A/B side, opposite + rear	15	0	-	-	_	-	-	-	-	•	•	•	•	150
	Port plate with pressure-relief valves,	37	0	-	_	-	•	-	-	-	-	-	-	-	370
	For mounting a counterbalance valve 4) 5)	38	0	_	•	•	•	•	•	-	_	-	_	-	380

Valves		
Without valve	0	
With flush and boost pressure valve	7	

Ordering Code / Standard Program

	A6V		M					/	63	W		-	٧								-	
01	02	0.3	04	05	06	07	08		09	10	11		19	13	14	15	16	17	18	19		20

	Speed measurement	28	55	80	107	140	160	200	250	355	500	1000	
	Without speed measurement (without code)	•	•	•	•	•	•	•	•	•	•	•	
16	Prepared for speed measurement (ID) ⁶)	•	•	•	•	•	•	•	-	-	-	- [D
	Propored for apped massurament (HDD) 6)												-

	Swivel angle indicator	28	55	80	107	140	160	200	250	355	500	1000	
	Without swivel angle indicator (without code)	•	•	•	•	•	•	•	•	•	•	-	
17	With optical swivel angle indicator	-	-	-	-	-	-	-	•	•	•	•	V
	With electric swivel angle indicator	_	_	_	_	_	_	_					F

	Connector for solenoids (only sizes 28 to 200) 7)	EP1/2	EZ1/2	EZ3/4	HA.U.	HA.R.8)	DA.	
	DEUTSCH - molded connector, 2-pin - without suppressor diode	•	•	0	0	•	•	Р
18	DEUTSCH - molded connector, 2-pin - with suppressor diode	-	0	-	-	-	0	a
	HIRSCHMANN - connector – without suppressor diode	A	A	A	A	A	A	Н

Start of control	28	55	80	107	140	160	200	250	355	500	1000		
At V _{g min} (standard for HA)	•	•	•	•	•	•	•	•	•	•	•	Α	
At V _{g max} (standard for HD, HZ, EP, EZ, DA)	•	•	•	•	•	•	•	•	•	•	•	В	ı

Standard / special version9)

	•	·	
	Standard version	(without code)	
20		With attachment part	-K
20	Special version		-S
		With attachment part	-SK

- 1) Supplied as standard with version D (sizes 250 to 1000)
- 2) Please specify precise setting for $V_{g \, min}$ and $V_{g \, max}$ in plain text when ordering: $V_{g \, min} = ... \, cm^3$, $V_{g \, max} = ... \, cm^3$
- 3) Metric fixing thread
- 4) Only possible in combination with HD, EP, HA control
- 5) Complete order recommended, counterbalance valve pages 68...70
- 6) Complete order recommended, speed sensor page 72...73
- 7) The HIRSCHMANN connector without suppressor diode is only standard with sizes 250 to 1000 (without code)
- 8) With HA.R1 and HA.R2 for the 2nd solenoid (Ø 45), the version with DEUTSCH molded connector is available on request.
- 9) Adjustment data are included in the material number

\bullet = available	O = on request	▲ = not for new projects	– = not available
- prefer	rred program		

Technical Data

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90223 (HF hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and operating conditions.

The A6VM variable motor is not suitable for operation with HFA. If HFB, HFC and HFD or environmentally acceptable hydraulic fluids are being used, the limitations regarding technical data and seals mentioned in RE 90221 and RE 90223 must be observed.

When ordering, please indicate the used hydraulic fluid.

Operating viscosity range

For optimum efficiency and service life, select an operating viscosity (at operating temperature) within the optimum range of

```
v_{opt} = optimum operating viscosity 16 to 36 mm<sup>2</sup>/s
```

depending on the circuit temperature (closed circuit) and tank temperature (open circuit).

Limits of viscosity range

The limiting values for viscosity are as follows:

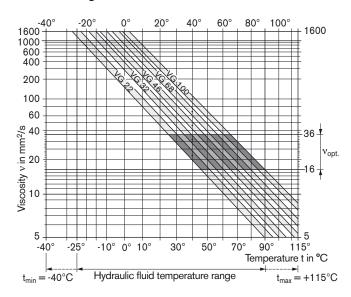
Sizes 28 to 200:

```
v_{min} = 5 \text{ mm}^2/\text{s},
short-term (t < 3 min)
at max. perm. temperature of t_{max} = +115°C.
```

```
\begin{array}{lll} v_{\text{max}} = & 1600 \text{ mm}^2/\text{s}, \\ & \text{short-term (t < 3 min)} \\ & \text{at cold start (p \le 30 bar, n \le 1000 rpm, t}_{\text{min}} = -40^{\circ}\text{C}) \\ & \text{Only for starting up without load. Optimum operating} \\ & \text{viscosity must be reached within approx. 15 minutes.} \end{array}
```

Sizes 250 to 1000:

```
v_{min} = 10 \text{ mm}^2/\text{s},
short-term (t < 3 min)
at max. perm. temperature of t_{max} = +90^{\circ}\text{C}.
```


```
\begin{array}{ll} \nu_{max} = \ 1000 \ mm^2/s, \\ & \text{short-term (t < 3 min)} \\ & \text{at cold start (p \le 30 bar, n \le 1000 rpm, t}_{min} = -25^{\circ}\text{C}). \\ & \text{Only for starting up without load. Optimum operating} \\ & \text{viscosity must be reached within approx. 15 minutes.} \end{array}
```

Note that the maximum hydraulic fluid temperature of 115°C (90°C for size 250...1000) must not be exceeded locally either (e.g. in the bearing area). The temperature in the bearing area is - depending on pressure and speed - up to 12 K higher than the average case drain temperature.

Special measures are necessary in the temperature range from -40°C and -25°C (cold start phase), please contact us.

For detailed information about use at low temperatures, see RE 90300-03-B.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit the circuit temperature, in an open circuit the tank temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (ν_{opt} .) - the shaded area of the selection diagram. We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X°C an operating temperature of 60° C is set. In the optimum operating viscosity range (v_{opt} ; shaded area) this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Please note:

The case drain temperature, which is affected by pressure and speed, is always higher than the circuit temperature or tank temperature. At no point in the system may the temperature be higher than 115°C for sizes 28 to 200 or 90°C for sizes 250 to 1000.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case at port U or using a flush and boost pressure valve (see pages 66-67).

Technical Data

Filtration

The finer the filtration, the higher the cleanliness level of the hydraulic fluid and the longer the service life of the axial piston unit.

To ensure functional reliability of the axial piston unit, the hydraulic fluid must have a cleanliness level of at least

20/18/15 according to ISO 4406.

At very high hydraulic fluid temperatures (90°C to max. 115°C) at least cleanliness level

19/17/14 according to ISO 4406 is required.

If the classes specified above cannot be maintained, please contact us.

Operating pressure range

Maximum pressure on port A or B (pressure data according to DIN 24312)

for sizes 28 to 200

Nominal pressure p _N Peak pressure p _{max} Total pressure (pressure A + pressure B) p _{max}	400 bar 450 bar 700 bar
for sizes 250 to 1000	
Nominal pressure p _N	350 bar 400 bar 700 bar

Please note:

Sizes 28 to 200: With shaft end **Z**, a nominal pressure of $p_N = 315$ bar ($p_{max} = 350$ bar) is permissible for drives with radial loading of the drive shaft (pinions, V-belts)! Sizes 250 to 1000: Please contact us.

In cases of pulsating loading above 315 bar, we recommend the version with splined shaft A (sizes 28 to 200) or with splined shaft Z (sizes 250 to 1000).

Direction of flow

Direction of rotation, viewed fr	om shaft end
clockwise	counter-clockwise
A to B	B to A

Speed range

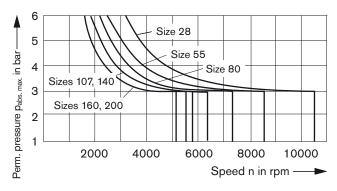
No limit to minimum speed n_{min} . If uniformity of motion is required, speed n_{min} must not be less than 50 rpm. See table of values on page 7 for maximum speed.

Long-Life bearing (sizes 250 to 1000)

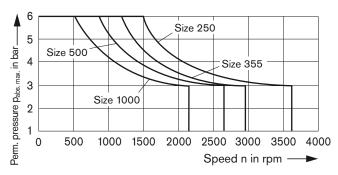
For long service life and use with HF hydraulic fluids. Same external dimensions as motor with standard bearing. A long-life bearing can be specified. Flushing of bearing and case via port U recommended.

Flushing volumes (recommended)

Size	250	355	500	1000
q _{v flush} (I/min)	10	16	16	16


Shaft seal ring

Permissible pressure load


The service life of the shaft seal ring is affected by the speed of the motor and the case drain pressure. It is recommended that the average, continuous case drain pressure at operating temperature 3 bar absolute not be exceeded (max. permissible case drain pressure 6 bar absolute at reduced speed, see diagram). Short-term (t < 0.1 s) pressure spikes of up to 10 bar absolute are permitted. The service life of the shaft seal ring decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or greater than the external pressure on the shaft seal ring.

Sizes 28 to 200

Sizes 250 to 1000

Temperature range

The FKM shaft seal ring is permissible for case temperatures of -25°C to +115°C for sizes 28 to 200 and -25°C to +90°C for sizes 250 to 1000

Note

For application cases below -25°C, an NBR shaft seal ring is necessary (permissible temperature range: -40°C to +90°C.) Please state NBR shaft seal ring in plain text when ordering. Please contact us.

Effect of case pressure on start of control

An increase in the case pressure has an effect on the following controls when control of the variable motor begins:

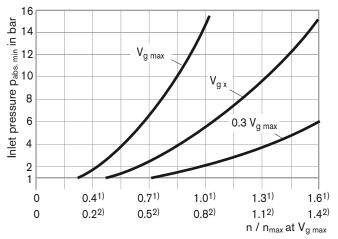
HA1T (sizes 28 to 200)	_ increase
HD, EP, HA, HA.R, HA.U, HA.T (sizes 250 to 1000)	increase
DA	decrease

The start of control is set in the factory at a case pressure of p_{abs} = 2 bar for sizes 28 to 200 and p_{abs} = 1 bar for sizes 250 to 1000.

7/76

Technical Data

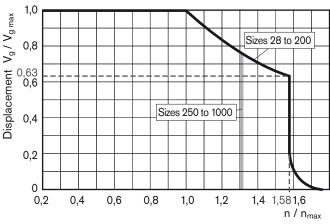
Table of values (theoretical values, without efficiency and tolerances; values rounded)


Size			28	55	80	107	140	160	200	250	355	500	1000
Displacement 1)	$V_{g max}$	cm ³	28,1	54,8	80	107	140	160	200	250	355	500	1000
	V _{g 0}	cm ³	0	0	0	0	0	0	0	0	0	0	0
Max. speed	n_{max} at $V_{\text{g max}}$	rpm	5550	4450	3900	3550	3250	3100	2900	2700	2240	2000	1600
(while adhering to max. permissible flow)	n_{max} at $V_g < V_{gx}$	rpm	8750	7000	6150	5600	5150	4900	4600	3600	2950	2650	2100
to max. permissible now,	$V_{gx} = 0,63 \text{ x } V_{gmax}$	cm ³	18	35	51	68	88	101	126	188 ²)	270 ²)	377 ²)	762 ²)
	$n_{\text{max 0}}$ at $V_{\text{g 0}}$	rpm	10450	8350	7350	6300	5750	5500	5100	3600	2950	2650	2100
Max. flow	q _{V max}	l/min	156	244	312	380	455	496	580	675	795	1000	1600
Max. torque	T _{max} at V _{g max} ³)	Nm	179	349	509	681	891	1019	1273	1391	1978	2785	5571
Rotary stiffness													
$V_{g max}$ to $V_{g/2}$	C _{min}	Nm/rad	5670	10400	15500	21000	33900	35300	43800	59500	74800	115000	281000
V _{g/2} to 0 _(interpolated)	C _{max}	Nm/rad	18100	32000	47900	65200	93400	105000	130000	181000	262000	391000	820000
Moment of inertia for rotary group	J_{TW}	kgm²	0,0014	0,0042	0,0080	0,0127	0,0207	0,0253	0,0353	0,061	0,102	0,178	0,550
Angular acceleration maximum	α	rad/s²	47000	31500	24000	19000	11000	11000	11000	10000	8300	5500	4000
Filling capacity	V	L	0,5	0,75	1,2	1,5	1,8	2,4	2,7	3,0	5,0	7,0	16,0
Mass (approx.)	m	kg	16	26	34	47	60	64	80	100	170	210	430

¹⁾ the minimum and maximum displacements are infinitely variable, see ordering code on page 3. (default settings for sizes 250 to 1000 unless specified in the order: V_{g min} = 0.2 • V_{g max}, V_{g max} = V_{g max}).

Caution: Exceeding the permissible limit values may result in a loss of function, a reduction in service life or in the destruction of the axial piston unit.

Other permissible limit values with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible startup angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.


Minimum inlet pressure on service line port A(B)

- 1) for sizes 28 to 2002) for sizes 250 to 1000
- To prevent damage to the variable motor, there must be a minimum inlet pressure in the inlet area. The minimum inlet pressure is dependent on the speed and swivel angle (displacement) of the variable motor.

Please contact us if these conditions cannot be satisfied.

Permissible displacement in relation to speed

²) $V_{g x}$ = 0,75 x $V_{g max}$ (appr.)

³⁾ sizes 28 to 200: $\Delta p = 400$ bar; sizes 250 to 1000: $\Delta p = 350$ bar

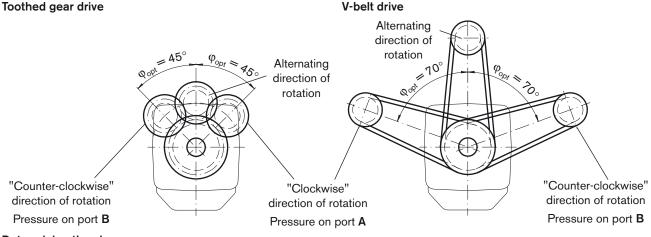
Technical Data

Permissible radial and axial loading on the drive shaft

The specified values are maximum values and do not apply to continuous operation.

Size			28	55	80	107	140	160	200	250	355	500	1000
Radial force, max.1) Fq	F _{q max}	N	5696	10440	13114	15278	17808	20320	22896	1200²)	1500²)	1900²)	2600²)
at distance a (from shaft collar)	a	mm	12.5	15	17.5	20	22.5	22.5	25	41	52.5	52.5	67.5
Axial force, max.3)	- F _{ax max}	N	315	500	710	900	1030	1120	1250	1200	1500	1900	2600
++	+ F _{ax max}	N	315	500	710	900	1030	1120	1250	4000	5000	6250	10000
Permissible axial force/bar operating pressure	- F _{ax per.} /bar	N/bar	4.6	7.5	9.6	11.3	13.3	15.1	17.0	4)	4)	4)	4)

¹⁾ during intermittent operation (sizes 28 to 200).


When considering the permissible axial force, the force-transfer direction must be taken into account.

 $-F_{ax max}$ = increase in service life of bearings

 $+ F_{ax max} = reduction in service life of bearings (avoid)$

Effect of radial force F_q on the service life of bearings

By selecting a suitable force-transfer direction of F_q , the stress on the bearings caused by the internal transmission forces can be reduced, thus achieving the optimum service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

Determining the size

Flow
$$q_v = \frac{V_g \bullet n}{1000 \bullet \eta_v} \hspace{1cm} l/min \hspace{1cm} V_g \hspace{1cm} = \hspace{1cm} Displacement per revolution in cm^3} \\ \Delta p \hspace{1cm} = \hspace{1cm} Differential pressure in bar \\ n \hspace{1cm} = \hspace{1cm} Speed \hspace{1cm} n \hspace{1cm} = \hspace{1cm} Speed in rpm \\ \eta_v \hspace{1cm} = \hspace{1cm} Volumetric efficiency \\ \eta_{mh} \hspace{1cm} = \hspace{1cm} Mechanical-hydraulic efficiency \\ \eta_{tt} \hspace{1cm} = \hspace{1cm} Overall \hspace{1cm} efficiency \\ Power \hspace{1cm} P \hspace{1cm} = \hspace{1cm} \frac{2 \, \pi \bullet T \bullet n}{60000} = \hspace{1cm} \frac{q_v \bullet \Delta p \bullet \eta_t}{600} \hspace{1cm} kW$$

²⁾ when at a standstill or when axial piston unit operating in depressurized condition. Higher forces are permissible when under pressure. Please contact us.

³⁾ max. permissible axial force when at a standstill or when axial piston unit operating in depressurized condition.

⁴⁾ please contact us.

9/76

HD - Hydraulic Control, Pilot-Pressure Related

The pilot-pressure related hydraulic control permits infinite control of the displacement according to the pilot-pressure signal. The displacement is proportional to the pilot pressure applied to port X.

Standard configuration:

- Start of control at V_{g max} (max. torque, min. speed)
- End of control at V_{q min} (min. torque, max. permitted speed)

Please note:

- Maximum permissible pilot pressure: 100 bar
- For reliable control, an operating pressure of at least 30 bar is necessary in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar must be applied at port G via an external check valve. Lower pressures may be adequate in individual cases.
- Please state the desired start of control in plain text when ordering, e.g.: start of control at 10 bar.

The following only applies to sizes 250 to 1000:

- The start of control and the HD characteristic are influenced by the case pressure. An increase in the case pressure causes an increase in the start of control (see page 6) and thus a parallel displacement of the characteristic.
- Fluid escapes from port X at the rate of max. 0.3 l/min due to internal leakage (operating pressure > pilot pressure). To prevent a build-up in pilot pressure, port X must be vented to tank.

HD₁ pilot pressure increase $_{\Lambda}$ p_S = 10 bar


An increase in pilot pressure of 10 bar on port X causes a reduction in the displacement from V $_{g max}$ to 0 cm 3 (sizes 28 to 200) or from $V_{g\;max}$ to 0.2 $V_{g\;max}$ (sizes 250 to 1000).

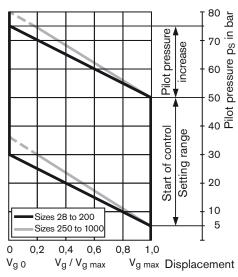
Start of control (setting range) 2 – 20 bar

Default setting:

start of control at 3 bar (end of control at 13 bar)

Characteristic HD1

HD2 pilot pressure increase $\Delta p_S = 25$ bar


An increase in pilot pressure of 25 bar on port X causes a reduction in the displacement from V_{q max} to 0 cm³ (sizes 28 to 200) or from $V_{q \text{ max}}$ to 0.2 $V_{q \text{ max}}$ (sizes 250 to 1000).

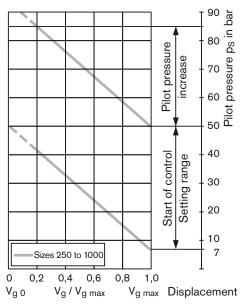
Start of control, setting range ______ 5 - 50 bar

Default setting:

start of control at 10 bar (end of control at 35 bar)

Characteristic HD2

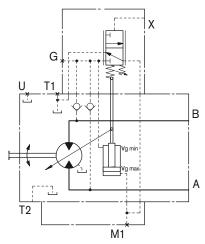
HD3 pilot pressure increase $\Delta p_S = 35$ bar

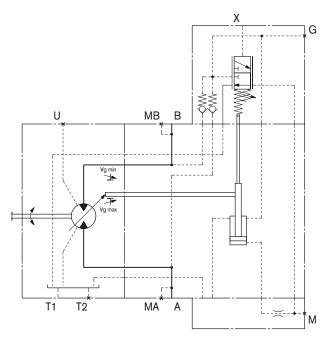

An increase in pilot pressure of 35 bar on port X causes a reduction in the displacement from $V_{g\ max}$ to 0.2 $V_{g\ max}$ (sizes 250 to 1000).

Start of control, setting range _____ 7 - 50 bar

Default setting:

start of control at 10 bar (end of control at 45 bar)


Characteristic HD3


HD - Hydraulic Control, Pilot-Pressure Related

Circuit diagram HD1, HD2, HD3

Sizes 28 to 200

Sizes 250 to 1000

Note

The spring return in the control unit is not a security device.

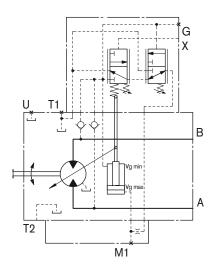
The control spool and/or the positioning piston can be blocked in an undefined position by internal contamination – e.g. impure hydraulic fluid, abrasion or residual contamination from system components. As a result, the variable motor can no longer provide the speed and torque specified by the operator.

- Install an appropriate emergency-off function to ensure that the driven consumer can be brought to a safe position (e.g. immediate stop).
- Maintain the specified cleanliness level 20/18/15 (< 90°C) or 19/17/14 (> 90°C) in accordance with ISO 4406.

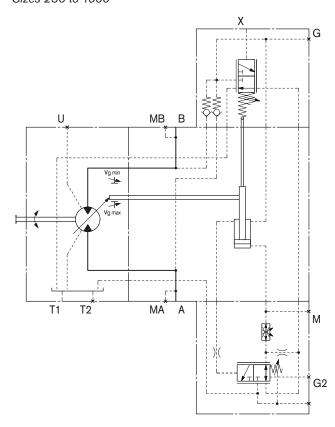
HD.D Pressure control, direct

The pressure control overlays the HD function. If the load increases, or a reduction in the swivel angle of the motor causes the system pressure to increase, the motor will start to swivel to a greater angle when the pressure reaches the setpoint value of the pressure control.

The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.


Setting range on the pressure control valve:

Sizes 28 to 200______80 - 400 bar


Sizes 250 to 1000______80 - 350 bar

Circuit diagram HD.D

Sizes 28 to 200

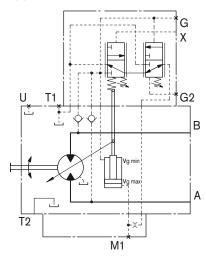
Sizes 250 to 1000

HD - Hydraulic Control, Pilot-Pressure Related

HD.E Pressure control, direct with 2nd pressure setting

Sizes 28 to 200

Connecting an external pilot pressure to port G2 allows the pressure controller setting to be over-ridden and a 2nd pressure setting to be used.


Required pilot pressure on port G2:

Sizes 28 to 200 ______ $p_{St} = 20 - 50$ bar

Please specify the 2nd pressure setting in plain text when ordering.

Circuit diagram HD.E

Sizes 28 to 200

Sizes 250 to 1000 (HD.D)

Pressure control with 2nd pressure setting provided as standard with HD.D (see page 10).

Connecting an external pilot pressure to port G2 allows the pressure controller setting to be over-ridden and a 2nd pressure setting to be used.

Required pilot pressure on port G2:

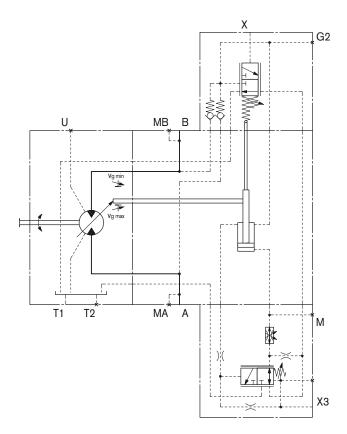
Sizes 250 to 1000 $p_{St} \ge 100$ bar

Please specify the 2nd pressure setting in plain text when ordering.

HD.G Pressure control, remote

Sizes 250 to 1000

When the set pressure value is reached, the remote pressure control regulates the motor continuously up to the maximum displacement $V_{g\ max}$. A pressure-relief valve (not supplied) controls the internal pressure cut-off valve. The pressure-relief valve is separate from the motor and is connected to X3. As long as operating pressure is below the set point of the external pressure-relief valve (80 - 350 bar), the pressure is equal on both sides of the internal pressure cut-off valve, and spring force keeps it closed. The external relief valve opens when the operating pressure exceeds the set point, and the pressure on the spring end of the pressure cut-off valve is reduced.


The pressure cut-off valve then modulates the motor displacement (i.e.-swivelling towards maximum displacement) to limit operating pressure.

The standard differential pressure setting of the internal pressure cut-off valve is 25 bar. We recommend the following for use as the external (i.e.-remote control) pressure-relief valve:

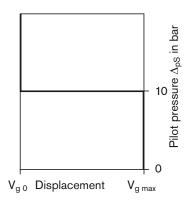
DBD 6 (hydraulic) according to RE 25402

The max. line length must not exceed 2 m.

Circuit diagram HD.G

HZ - Hydraulic Two-Point Control

Hydraulic two-point control allows the displacement to be set to $V_{g\ min}$ or $V_{g\ max}$ by switching the pilot pressure at port X on or off


No pilot pressure $riangleq ext{position at } V_{g \text{ max}}$

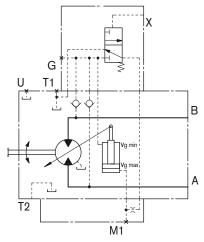
Pilot pressure switched (>10 bar) \triangle position at $V_{g min}$

Standard configuration:

- Start of control at V_{g max} (max. torque, min. speed)
- End of control at V_{g min} (min. torque, max. permitted speed)

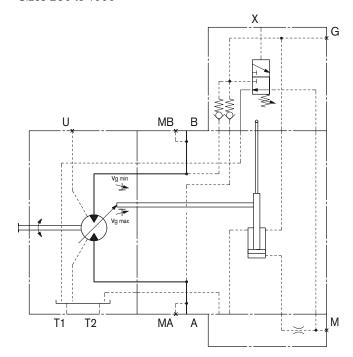
Characteristic HZ

Please note:

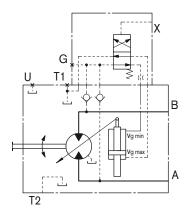

- Maximum permissible pilot pressure: 100 bar
- For reliable control, an operating pressure of at least 30 bar is necessary in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar is to be applied at port G via an external check valve. Lower pressures may be adequate in individual cases.

The following only applies to sizes 250 to 1000:

 Fluid escapes from port X at the rate of max. 0.3 l/min due to internal leakage (operating pressure > pilot pressure). To prevent a build-up in pilot pressure, port X must be vented to tank.


Circuit diagram HZ1

Sizes 28, 140, 160, 200

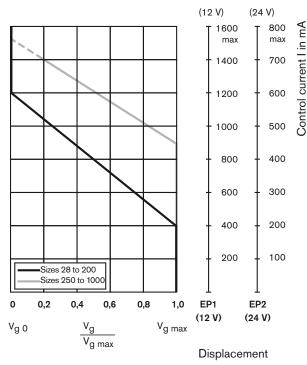

Circuit diagram HZ

Sizes 250 to 1000

Circuit diagram HZ3

Sizes 55, 80, 107

13/76


EP - Electric Control with Proportional Solenoid

Electric control using a proportional solenoid (sizes 28 to 200) or proportional valve (sizes 250 to 1000) permits continuous control of the displacement according to an electric signal. The control is proportional to the applied electric control current. For sizes 250 to 1000, an external pressure of $p_{min} = 30$ bar is necessary for the control oil supply to port P ($p_{max} = 100 \text{ bar}$).

Standard configuration:

- Start of control at V_{g max} (max. torque, min. speed)
- End of control at V_{q min} (min. torque, max. permitted speed)

Characteristic EP

Please note:

- For reliable control, an operating pressure of at least 30 bar is necessary in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar is to be applied at port G via an external check valve. Lower pressures may be adequate in individual cases.

The following only applies to sizes 250 to 1000:

- The start of control and the EP characteristic are influenced by the case pressure. An increase in the case pressure causes an increase in the start of control (see page 6) and thus a parallel displacement of the characteristic.

Technical data, solenoid for EP1, EP2 (sizes 28 to 200)

	EP1	EP2
Voltage	12 V (±20 %)	24 V (±20 %)
Control current		
Start of control at V _{gmax}	400 mA	200 mA
End of control at V _{g min}	1200 mA	600 mA
Limiting current	1.54 A	0.77 A
Nominal resistance (at 20°C)	5.5 Ω	22.7 Ω
Dither frequency	100 Hz	100 Hz
Actuated time	100 %	100 %
Type of protection See	connector design	n, page 74

The following electronic controllers and amplifiers are available for controlling the proportional solenoids (sizes 28 to 200) (information is also available on the Internet at www.boschrexroth.com/ mobile-electronics):

- BODAS controller RC	
series 20	RE 95200
series 21	RE 95201
series 22	RE 95202
series 30	RE 95203
and application software	
- Analog amplifier RA	RE 95230
 VT 2000 electric amplifier, series 5X (for stationary application) 	RE 29904

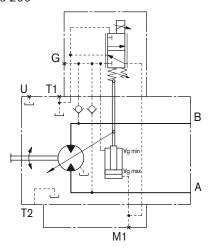
Technical data, proportional valve for EP1, EP2 (sizes 250 to 1000)

	EP1	EP2		
tage	12 V (±20 %)	24 V (±20 %)		
ntrol current				
tart of control at V _{g max}	900 mA	450 mA		
nd of control at V _{g min}	1400 mA	700 mA		
niting current	2.2 A	1.0 A		
minal resistance (at 20°C)	2.4 Ω	12 Ω		
tuated time	100 %	100 %		
Type of protection See connector design, page 74				
tuated time	100 % see connector de	100 %		

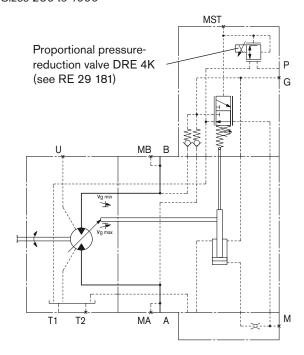
See also proportional pressure-reduction valve DRE 4K (RE 29 181).

Note

The spring return in the control unit is not a security device.


The control spool and/or the positioning piston can be blocked in an undefined position by internal contamination - e.g. impure hydraulic fluid, abrasion or residual contamination from system components. As a result, the variable motor can no longer provide the speed an torque specified by the operator.

- Install an appropriate emergency-off function to ensure that the driven consumer can be brought to a safe position (e.g. immediate stop).
- Maintain the specified cleanliness level 20/18/15 (< 90°C) or 19/17/14 (> 90°C) in accordance with ISO 4406.


EP - Electric Control with Proportional Solenoid

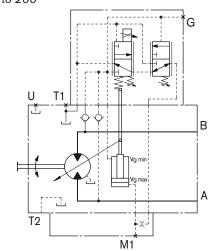
Circuit diagram EP1, EP2

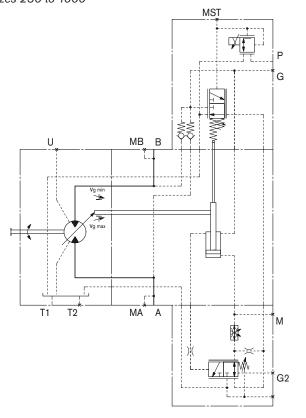
Sizes 28 to 200

Sizes 250 to 1000

EP.D Electric control with pressure control, direct

The pressure control overlays the EP function. If the load increases or a reduction in the swivel angle of the motor causes the system pressure to increase, the motor will start to swivel to a greater angle when the pressure reaches the setpoint value of the pressure control.


The increase in the displacement and the resulting reduction in pressure cause the control deviation to decrease. With the increase in displacement the motor develops more torque, while the pressure remains constant.


Setting range on the pressure-control valve:

Sizes 28 to 200 ______80 - 400 bar Sizes 250 to 1000 80 - 350 bar

Circuit diagram EP.D

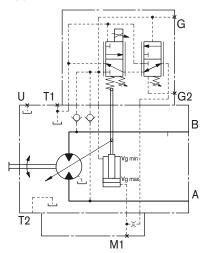
Sizes 28 to 200

EP - Electric Control with Proportional Solenoid

EP.E Pressure control, direct with 2nd pressure setting

Sizes 28 to 200

Connecting an external pilot pressure to port G2 allows the pressure controller setting to be overridden and a 2nd pressure setting to be used.


Required pilot pressure on port G2:

Sizes 28 to 200 _____ p_{St} = 20 - 50 bar

Please specify the 2nd pressure setting in plain text when ordering.

Circuit diagram EP.E

Sizes 28 to 200

Sizes 250 to 1000 (EP.D)

Pressure control with 2nd pressure setting provided as standard with EP.D (see circuit diagram, page 14).

Connecting an external pilot pressure to port G2 allows the pressure controller setting to be overridden and a 2nd pressure setting to be used.

Required pilot pressure on port G2:

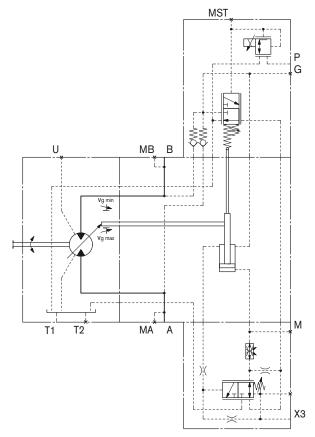
Sizes 250 to 1000 $p_{St} \ge 100$ bar

Please specify the 2nd pressure setting in plain text when ordering.

EP.G Electric control with pressure control, remote

Sizes 250 to 1000

When the set pressure value is reached, the remote pressure control regulates the motor continuously up to the maximum displacement $V_{g\ max}$. A pressure-relief valve (not supplied) controls the internal pressure cut-off valve. The pressure-relief valve is separate from the motor and is connected to X3. As long as operating pressure is below the set point of the external pressure-relief valve (80 - 350 bar), the pressure is equal on both sides of the internal pressure cut-off valve, and spring force keeps it closed. The external relief valve opens when the operating pressure exceeds the set point, and the pressure on the spring end of the pressure cut-off valve is reduced.


The pressure cut-off valve then modulates the motor displacement (i.e.-swivelling towards maximum displacement) to limit operating pressure.

The standard differential pressure setting of the internal pressure cut-off valve is 25 bar. We recommend the following for use as the external (i.e.-remote control) pressure-relief valve:

DBD 6 (hydraulic) according to RE 25402

The max. line length must not exceed 2 m.

Circuit diagram EP.G

EZ - Electric Two-Point Control, with Switching Solenoid

The electric control with switching solenoid (sizes 28 to 200) or switching valve (sizes 250 to 1000) permits setting the displacement to $V_{g\,\text{min}}$ or $V_{g\,\text{max}}$ by switching the electric current to the switching solenoid or switching valve on or off.

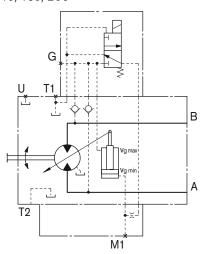
Please note:

- For reliable control, an operating pressure of at least 30 bar is necessary in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar is to be applied at port G via an external check valve. Lower pressures may be adequate in individual cases.

Technical data, solenoid with EZ1, EZ2 with dia. 37 (sizes 28, 140, 160, 200)

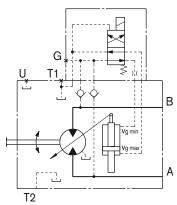
	EZ1	EZ2
Voltage	12 V (±20 %)	24 V (±20 %)
Position V _{g max}	de-energized	de-energized
Position V _{g min}	current switched on	current switched on
Nominal resistance (at 20°C)	5.5 Ω	21.7 Ω
Nominal output	26.2 W	26.5 W
Active current, min. necessary	1.32 A	0.67 A
Actuated time	100 %	100 %
Type of protection	See connector de	esign, page 74

Technical data, solenoid with EZ3, EZ4 with dia. 45 (sizes 55, 80, 107)

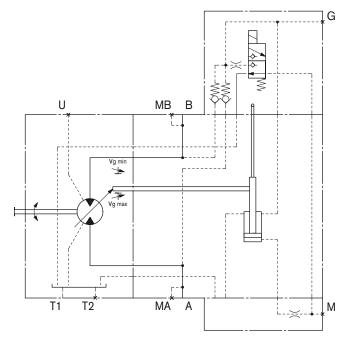

	EZ3	EZ4
Voltage	12 V (±20 %)	24 V (±20 %)
Position V _{g max}	de-energized	de-energized
Position V _{g min}	current switched on	current switched on
Nominal resistance (at 20°C)	4.8 Ω	19.2 Ω
Nominal output	30 W	30 W
Active current, min. necessary	1.5 A	0.75 A
Actuated time	100 %	100 %
Type of protection	See connector d	esign, page 74

Technical data, switching valve with EZ1, EZ2 (sizes 250 to 1000)

	EZ1	EZ2		
Voltage	12 V (±20 %)	24 V (±20 %)		
Position V _{g max}	de-energized	de-energized		
Position V _{g min}	current switched on	current switched on		
Nominal resistance (at 20°C)	6 Ω	23 Ω		
Nominal output	26 W	26 W		
Active current, min. necessary	2 A	1.04 A		
Actuated time	100 %	100 %		
Type of protection See connector design, page 74				


Circuit diagram EZ1, EZ2

Sizes 28, 140, 160, 200



Circuit diagram EZ3, EZ4

Sizes 55, 80, 107

Circuit diagram EZ1, EZ2

Bosch Rexroth AG

HA - Automatic Control, High-Pressure Related

With the automatic high-pressure related control, the motor displacement is adjusted automatically depending on the operating pressure.

The control unit internally measures the operating pressure at A or B (no control line required) and, when the pressure reaches the set pressure value, the controller swivels the motor with increasing operating pressure from $V_{q \, min}$ to $V_{q \, max}$.

Standard configuration HA1, HA2:

Start of control at $V_{g\ min}$ (min. torque, max. speed) End of control at $V_{g\ max}$ (max. torque, min. speed)

Please note:

- For safety reasons, winch drives are not permissible with start of control at $V_{g\,min}$ (standard for HA).
- For reliable control, an operating pressure of at least 30 bar is necessary in A (B). If a control operation is performed at an operating pressure < 30 bar, an auxiliary pressure of at least 30 bar is to be applied at port G via an external check valve. Lower pressures may be adequate in individual cases.
- The start of control and the HA characteristic are influenced by the case pressure. An increase in the case pressure causes an increase in the start of control (see page 6) and thus a parallel displacement of the characteristic. Only with HA1, HA2, HA.T, HA.R, HA.U (sizes 250 to 1000) and with HA1T (sizes 28 to 200).

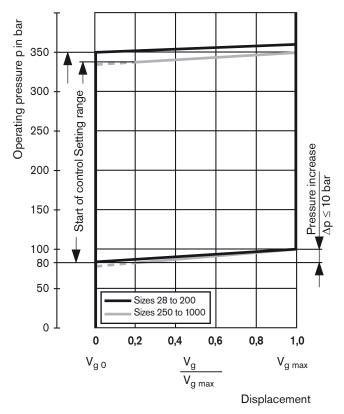
The following only applies to sizes 250 to 1000:

Fluid escape from port X at the rate of 0.3 l/min due to internal leakage (operating pressure > pilot pressure). To prevent a build-up in pilot pressure, port X must be vented to tank.
 Only with HA.T control.

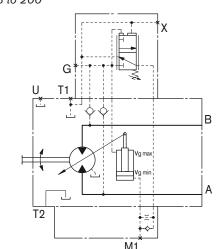
HA - Automatic Ccontrol, High-Pressure Related

HA1 Approximate without pressure increase

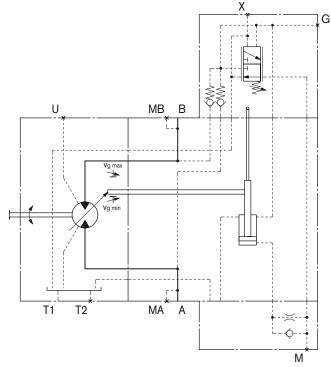
An increase in operating pressure of $\Delta p \leq \! 10$ bar causes an increase in the displacement from 0 cm³ to $V_{g \; max}$ (sizes 28 to 200) or from 0.2 $V_{g \; max}$ to $V_{g \; max}$ (sizes 250 to 1000).


Start of control, setting range

Sizes 28 to 200 ______80 - 350 bar


Sizes 250 to 1000 ______80 - 340 bar

Please state the desired start of control in plain text when ordering, e.g.: start of control at 300 bar


Characteristic HA

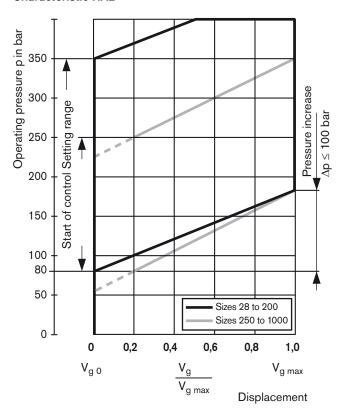
Circuit diagram HA1 Sizes 28 to 200

Sizes 250 to 1000

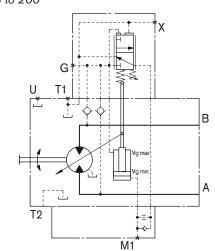
HA - Automatic Ccontrol, High-Pressure Related

HA2 Pressure increase $\Delta p = 100$ bar

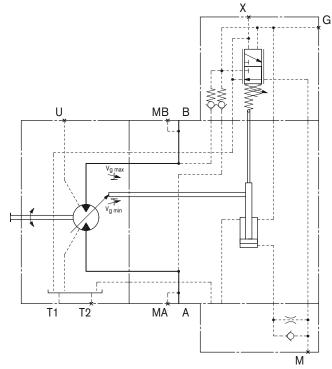
An increase in operating pressure of $\Delta p=100$ bar causes an increase in the displacement from 0 cm³ to $V_{g\,max}$ (sizes 28 to 200) or from 0.2 $V_{g\,max}$ to $V_{g\,max}$ (sizes 250 to 1000).


Start of control, setting range

Sizes 28 to 200 ______80 - 350 bar


Sizes 250 to 1000 ______80 - 250 bar

Please state the desired start of control in plain text when ordering, e.g.: start of control at 200 bar


Characteristic HA2

Circuit diagram HA2 Sizes 28 to 200

Sizes 250 to 1000

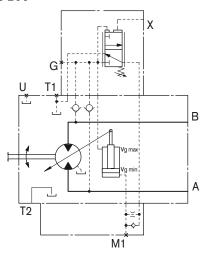
HA - Automatic Ccontrol, High-Pressure Related (override)

HA.T Hydraulic override of pressure setting

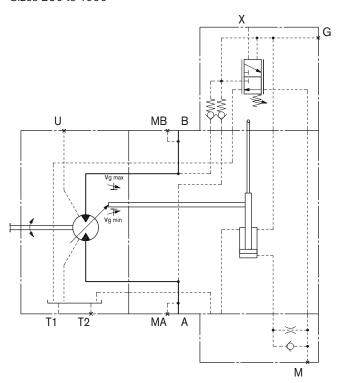
With the HA.T control, the start of control can be influenced by applying a pilot pressure to port X.

For each 1 bar of pilot pressure, the start of control is reduced by 17 bar for sizes 28 to 200 or 8 bar for sizes 250 to 1000.

Examples (sizes 28 to 200):


Start of control adjustment	300 bar	300 bar
Pilot pressure at port X	0 bar	10 bar
Start of control at	300 bar	130 bar

Note:


- Max. permissible pilot pressure 100 bar

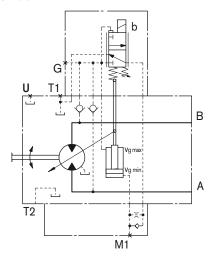
Circuit diagram HA1.T

Sizes 28 to 200

Sizes 250 to 1000

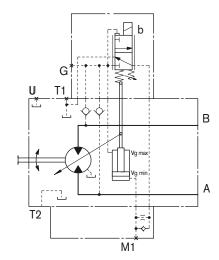
HA.U1, Electric override of HA.U2 pressure setting

With the HA.U1 or HA.U2 control, the start of control can be overridden by an electric signal to an switching solenoid. When the over-ride solenoid is energized, the variable motor swivels to the maximum swivel angle without stopping at an intermediate position.


The start of control can be set to between 80 and 300 bar (specify required setting in clear text when ordering).

Technical data, solenoid b with dia. 45 (el. override)

	U1	U2
Voltage	12 V (±20 %)	24 V (±20 %)
No override	de-energized	de-energized
Position V _{g max}	current switched on	current switched on
Nominal resistance (at 20°C)	4.8 Ω	19.2 Ω
Nominal output	30 W	30 W
Active current, min. necessary	1.5 A	0.75 A
Actuated time	100 %	100 %
Type of protection	See connector d	esign, page 74


Circuit diagram HA1U1, HA1U2

Sizes 28 to 200

Circuit diagram HA2U1, HA2U2

Sizes 28 to 200

21/76

HA - Automatic Ccontrol, High-Pressure Related (override)

HA.R1, Electric override of HA.R2 pressure setting, with elect. travel direction valve (see page 24)

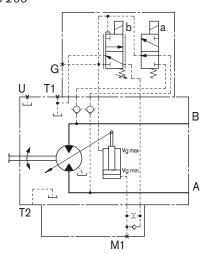
With the HA.R1 or HA.R2 control, the high-pressure related closed loop control can be overridden by an electric signal to switching solenoid b. When the over-ride solenoid is energized, the variable motor swivels to the maximum swivel angle without stopping at an intermediate position.

The travel direction valve ensures that the preselected pressure side of the hydraulic motor always controls the swivel angle, even if the high-pressure side changes (e.g. travel drive during a descent). This therefore prevents an undesirable swiveling of the variable motor to a larger displacement.

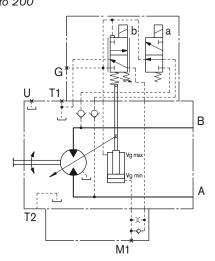
Depending on the direction of rotation (direction of travel), the travel direction valve (see page 24) can be actuated through the pressure spring or switching solenoid a.

Technical data, solenoid a with dia. 37 (travel direction valve)

roominoar data, solonola a mar diar or (traver an obtion rairo)						
		R1	R2			
Voltage		12 V (±20 %)	24 V (±20 %)			
No override		de-energized	de-energized			
Direction of rotation	Operating pressure in	switching	solenoid a			
counter-clockwise	В	actuated	actuated			
clockwise	Α	de-energized	de-energized			
Nominal resistance	(at 20°C)	5.5 Ω	21.7 Ω			
Nominal output		26.2 W	26.5 W			
Active current, min.	necessary	1.32 A	0.67 A			
Actuated time		100 %	100 %			
Type of protection	See	connector de	sign, page 74			


Technical data, solenoid b with dia. 451) (el. override)

•		
	R1	R2
Voltage	12 V (±20 %)	24 V (±20 %)
No override	de-energized	de-energized
Position V _{g max}	current switched on	current switched on
Nominal resistance (at 20°C)	4.8 Ω	19.2 Ω
Nominal output	30 W	30 W
Active current, min. necessary	1.5 A	0.75 A
Actuated time	100 %	100 %
Type of protection	See connector de	esign, page 74
type of protection	See connector di	esign, page 74


¹⁾ for solenoids with dia. 45, the version "DEUTSCH - molded connector" is available on request.

Circuit diagram HA1R1, HA1R2

Sizes 28 to 200

Circuit diagram HA2R1, HA2R2 Sizes 28 to 200

DA - Hydraulic Control, Speed Related

The A6VM variable motor with speed-related hydraulic control is best used for hydrostatic drives in combination with the A4VG variable pump with DA control.

The pilot pressure derived from the drive speed of the A4VG variable pump, together with the operating pressure, regulate the swivel angle of the hydraulic motor.

Increasing drive speed, i.e. increasing pilot pressure, causes the motor to swivel to a smaller displacement (lower torque, higher speed), depending on the operating pressure.

If the operating pressure increase above the pressure setting of the controller, the variable motor swivels to a larger displacement (higher torque, lower speed).

The design of a drive with DA control must be carried out using the technical data relating to the A4VG variable pump with DA control

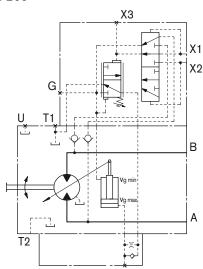
Detailed information can be obtained from our sales departments and on the Internet at www.boschrexroth.com/da-control.

Please note:

 The start of control and the DA characteristic are influenced by the case pressure. An increase in the case pressure causes a drop in the start of control (see page 6) and thus a parallel displacement of the characteristic.

23/76

DA - Hydraulic Control, Speed Related


DA, DA1, Hydraulic control speed DA4 related with hydr. travel direction valve

The travel direction valve is operated according to the direction of rotation (direction of travel) using the pilot pressures X_1 or X_2 .

Direction of rotation	Operating pressure in	Pilot pressure in
clockwise	Α	X_1
counter-clockwise	В	X ₂

Circuit diagram DA, DA1, DA4

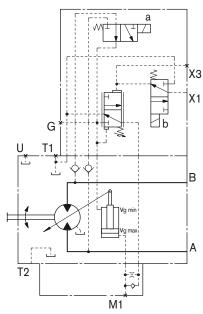
Sizes 28 to 200

Circuit diagram DA

Sizes 250 to 1000 X2 MB MA

DA2, DA3, Hydraulic control speed DA5, DA6 related with electr. travel direction valve + electr. V_{g max} control

Depending on the direction of rotation (direction of travel), the travel direction valve can be actuated through the pressure spring or switching solenoid a.


By connecting an electric current to switching solenoid b, the closed loop control can be overridden and the motor adjusted to max. displacement (high torque, low speed) (electric V_{g max} circuit).

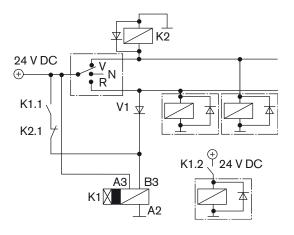
Technical data, solenoid A/B

			DA2, DA5	DA3, DA6
Voltage			12 V (±20 %)	24 V (±20 %)
Direction of rotation	Operating pressure i		switching solenoid a	
counter-clockwise	В		de-energized	de-energized
clockwise	Α		actuated	actuated
Nominal resistance (at 20°C)		$5.5~\Omega$	21.7 Ω	
Nominal output			26.2 W	26.5 W
Active current, min	. necessary	,	1.32 A	0.67 A
Actuated time			100 %	100 %
Type of protection	S	See c	onnector desi	gn, page 74

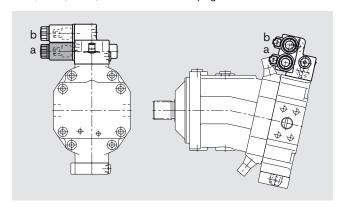
Circuit diagram DA2, DA3, DA5, DA6

Sizes 28 to 200

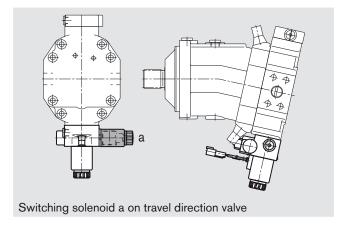
Electric Travel Direction Valve (for DA, HA.R)


Application in travel drives in closed controls. The travel direction valve of the motor is switched using the 4/3-directional valve on the control device of the driving pump.

When the pump (A4VG, A10VG) is switched to the neutral position or into reverse, the vehicle may experience impulsive braking depending on the vehicle's mass and current speed.


This impulsive braking is prevented through the use of the following electric control.

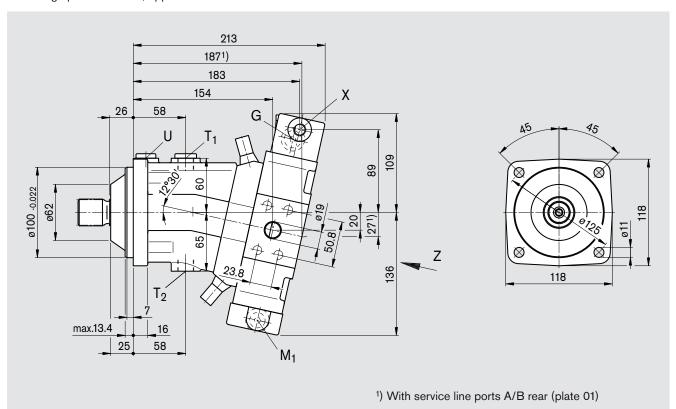
With this control, when the pump (A4VG, A10VG) is switched 1. to the neutral position: the previous travel direction is retained. 2. to reverse: the motor switches to the other travel direction following a time delay (approx. 0.8 s) with respect to the pump.


Electric travel direction valve control diagram

DA2, DA3, DA5, DA6 control (see page 23)

HA1R., HA2R. control (see page 21)

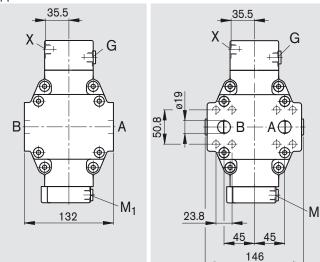
RE 91604/03.09 | A6VM Bosch Rexroth AG 25/76


Notice

Unit Dimensions, Size 28

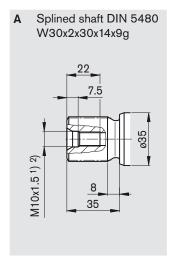
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

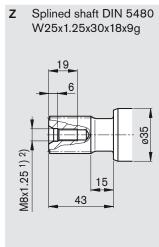
HD1, HD2 Hydraulic control, pilot-pressure related HZ1 Hydraulic two-point control


SAE flange ports A/B side, opposite (02)

View Z
SAE flange ports

A/B side, opposite (02)


SAE flange ports A/B rear (01)



Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

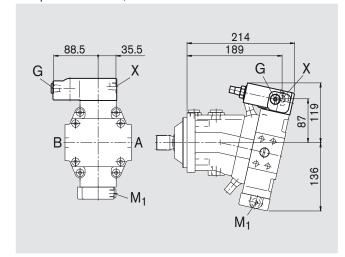
Unit Dimensions, Size 28

Shaft ends

Ports

A, B	Service line ports (high-pressure series)	SAE J518	3/4 in	
	Fixing thread A/B	DIN 13	M10x1.5; 17 deep 2	2)
T ₁	Case drain port 3)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
T_2	Case drain port	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
X, X_1, X_3	Pilot-pressure port	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
G	Port for synchronous control of multiple units and for remote control pressure ³)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
G_2	Port for 2nd pressure setting 3)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
U	Flow port ³)	DIN 3852	M16x1.5; 12 deep	100 Nm ²)
M_1	Gauge port for control pressure 3)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
4) -				

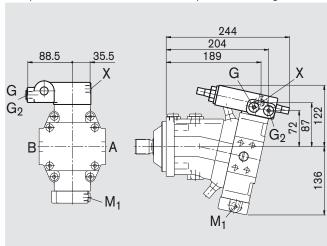
¹⁾ Center bore according to DIN 332 (thread according to DIN 13)


²⁾ Please observe the general notes for the max. tightening torques on page 76

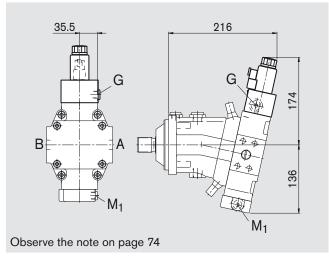
³⁾ Plugged

Unit Dimensions, Size 28

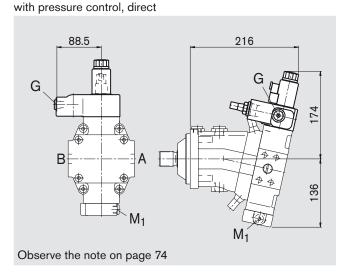
HD.D


Hydraulic control, pilot-pressure related, with pressure control, direct

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

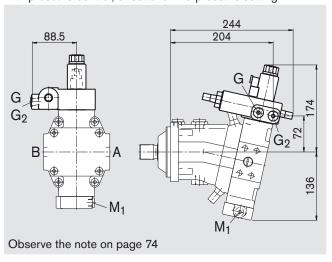

HD.E

Hydraulic control, pilot-pressure related, with pressure control, direct and 2nd pressure setting



EP1, EP2

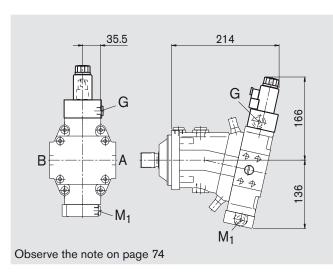
Electric control with proportional solenoid



EP.DElectric control (proportional solenoid)

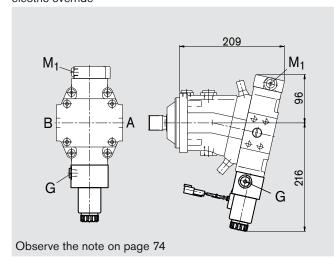
EP.E

Electric control (proportional solenoid) with pressure control, direct and 2nd pressure setting

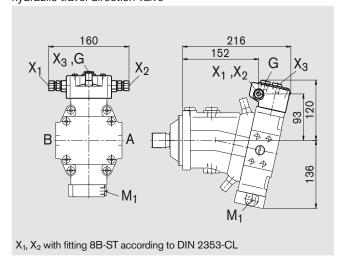


29/76

Unit Dimensions, Size 28


EZ1, EZ2

Electric two-point control with switching solenoid

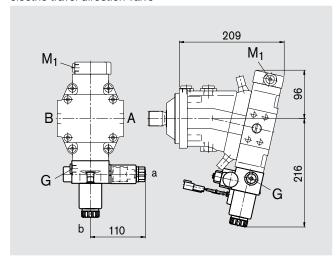

HA1U1, HA2U2

Automatic control, high-pressure related and electric override

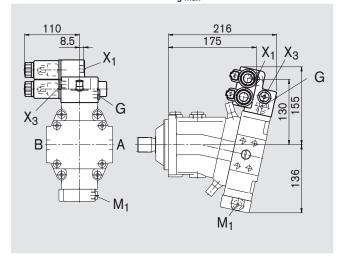
DA1, DA4

Hydraulic control, speed related and hydraulic travel direction valve

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


HA1, HA2 / HA1T, HA2T

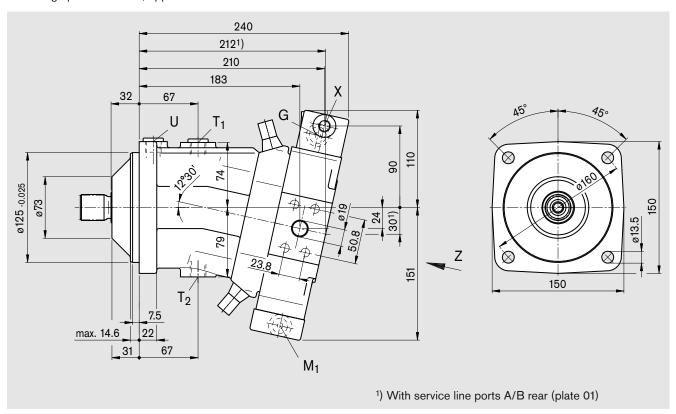
Automatic control, high-pressure related / high-pressure related and hydraulic override


HA1R1, HA2R2

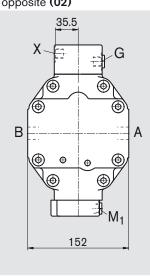
Automatic control, high-pressure related, electric override and electric travel direction valve

DA2, DA3, DA5, DA6

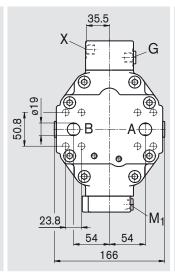
Hydraulic control, speed related, el. travel direction valve and el. $V_{g\ max}$ control

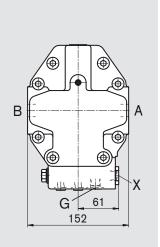


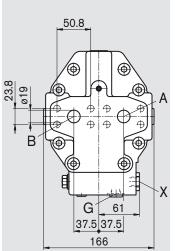
Unit Dimensions, Size 55


Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

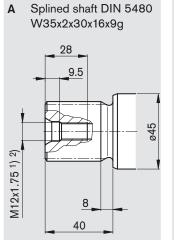
HD1, HD2 Hydraulic control, pilot-pressure related

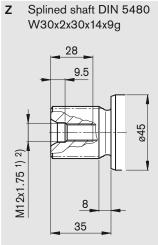

SAE flange ports A/B side, opposite (02)


View Z SAE flange ports A/B side, opposite (02)


SAE flange ports A/B rear (01)

SAE flange ports A/B side, opposite with **HZ3**, **EZ3** (02)


SAE flange ports A/B rear with HZ3, EZ3 (01)



Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

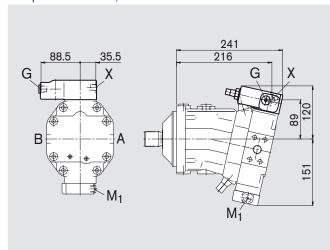
Unit Dimensions, Size 55

Shaft ends

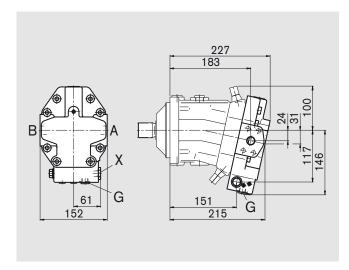
Ports

A, B	Service line ports (high-pressure series)	SAE J518	3/4 in	
	Fixing thread A/B	DIN 13	M10x1.5; 17 deep 2	2)
T ₁	Case drain port ³)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
T_2	Case drain port	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
X, X_1, X_3	Pilot-pressure port	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
G	Port for synchronous control of multiple units and for remote control pressure ³)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
G_2	Port for 2nd pressure setting 3)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
U	Flow port ³)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
M_1	Gauge port for control pressure 3)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
41				

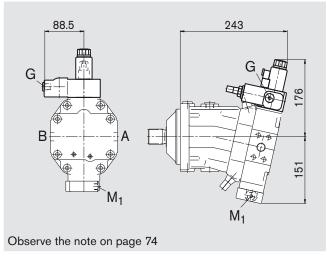
¹⁾ center bore according to DIN 332 (thread according to DIN 13)


²⁾ please observe the general notes for the max. tightening torques on page 76

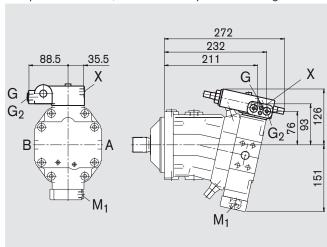
³⁾ plugged

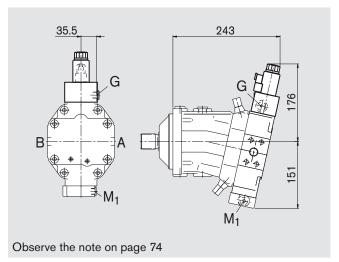

Unit Dimensions, Size 55

HD.D


Hydraulic control, pilot-pressure related, with pressure control, direct

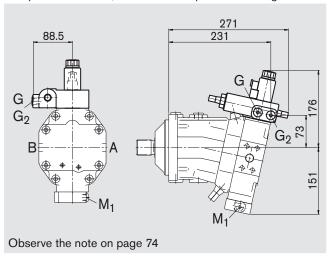
HZ3Hydraulic two-point control


EP.DElectric control (proportional solenoid) with pressure control, direct


Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

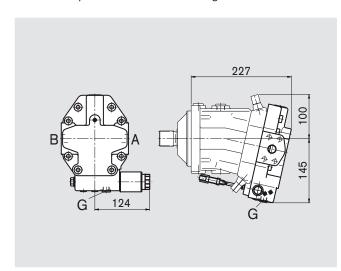
HD.E

Hydraulic control, pilot-pressure related, with pressure control, direct and 2nd pressure setting

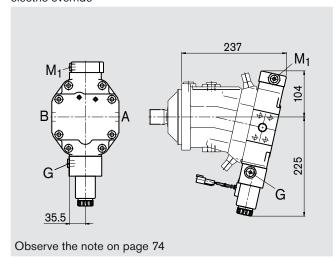


EP1, EP2
Electric control with proportional solenoid

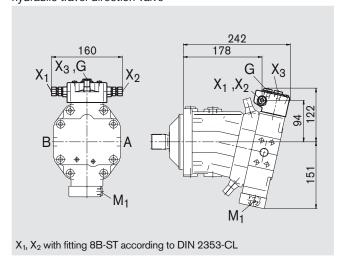
EP.E


Electric control (proportional solenoid) with pressure control, direct and 2nd pressure setting

Unit Dimensions, Size 55

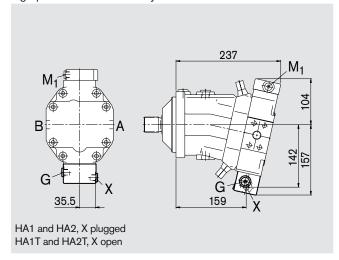

EZ3, EZ4

Electric two-point control with switching solenoid

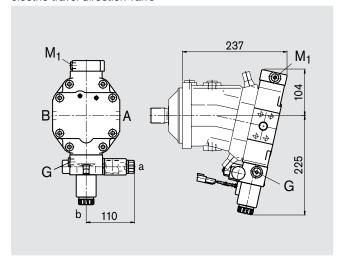

HA1U1, HA2U2

Automatic control, high-pressure related and electric override

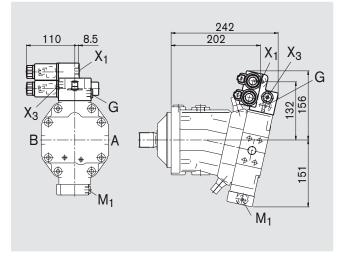
DA1, DA4


Hydraulic control, speed related and hydraulic travel direction valve

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


HA1, HA2 / HA1T, HA2T

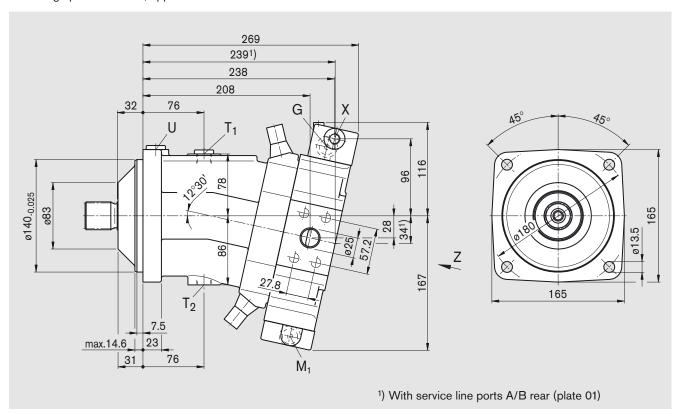
Automatic control, high-pressure related / high-pressure related and hydraulic override


HA1R1, HA2R2

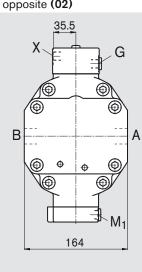
Automatic control, high-pressure related, electric override and electric travel direction valve

DA2, DA3, DA5, DA6

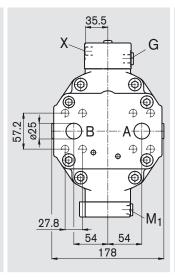
Hydraulic control, speed related, el. travel direction valve and el. Vg max control

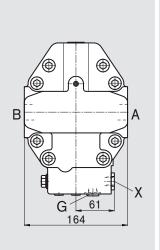


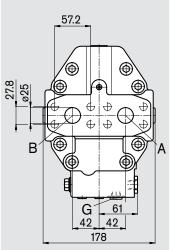
Unit Dimensions, Size 80


Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

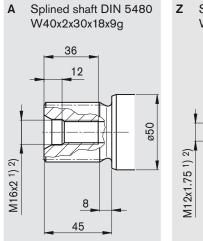
HD1, HD2 Hydraulic control, pilot-pressure related

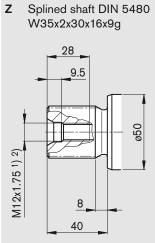

SAE flange ports A/B side, opposite (02)


View Z SAE flange ports A/B side, opposite (02)


SAE flange ports A/B rear (01)

SAE flange ports A/B side, opposite with **HZ3**, **EZ3** (02)


SAE flange ports, A/B rear with HZ3, EZ3 (01)



Unit Dimensions, Size 80

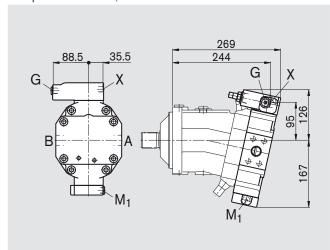
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Shaft ends

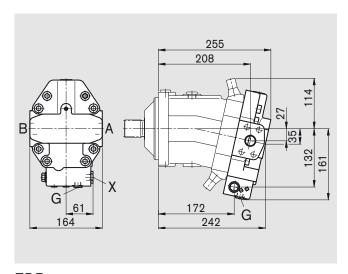
Ports

A, B	Service line ports (high-pressure series) Fixing thread A/B	SAE J518 DIN 13	1 in M12x1.75; 17 deep ²	·)
T ₁	Case drain port 3)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
T_2	Case drain port	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
X, X_1, X_3	Pilot-pressure port	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
G	Port for synchronous control of multiple units and for remote control pressure ³)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
G_2	Port for 2nd pressure setting 3)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
U	Flow port ³)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
M_1	Gauge port for control pressure 3)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)

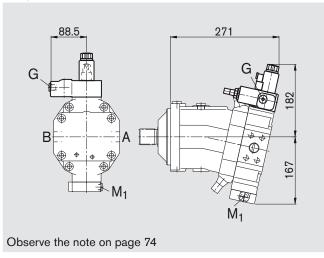
¹⁾ center bore according to DIN 332 (thread according to DIN 13)


²⁾ please observe the general notes for the max. tightening torques on page 76

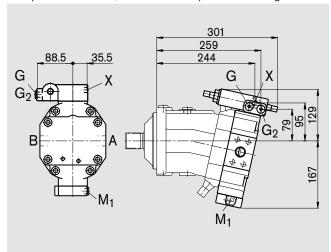
³⁾ plugged

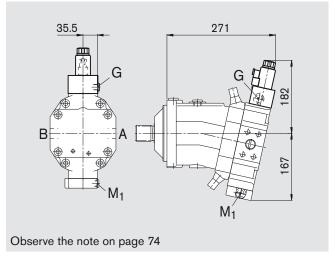

Unit Dimensions, Size 80

HD.D


Hydraulic control, pilot-pressure related, with pressure control, direct

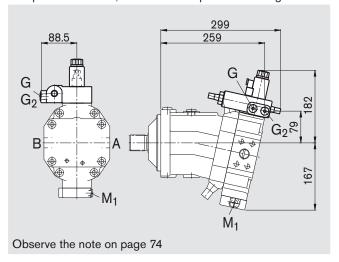
HZ3Hydraulic two-point control


EP.DElectric control (proportional solenoid) with pressure control, direct

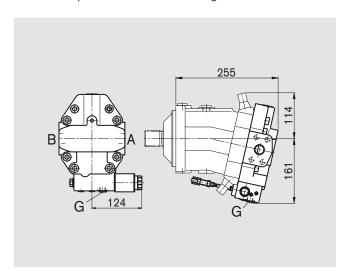

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

HD.E

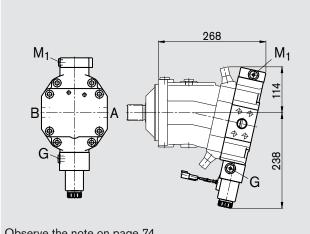
Hydraulic control, pilot-pressure related, with pressure control, direct and 2nd pressure setting



EP1, EP2
Electric control with proportional solenoid

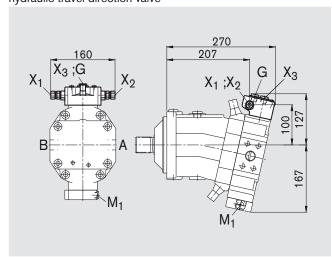

EP.E

Electric control (proportional solenoid) with pressure control, direct and 2nd pressure setting


EZ3, EZ4

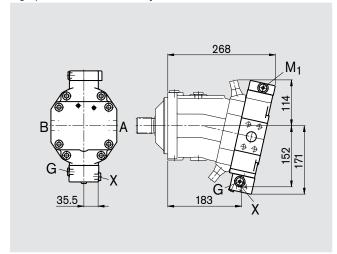
Electric two-point control with switching solenoid

HA1U1, HA2U2

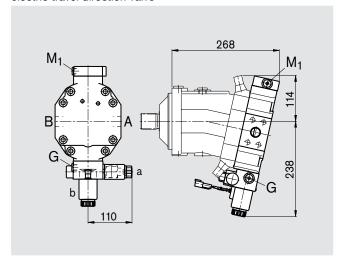

Automatic control, high-pressure related and electric override

Observe the note on page 74

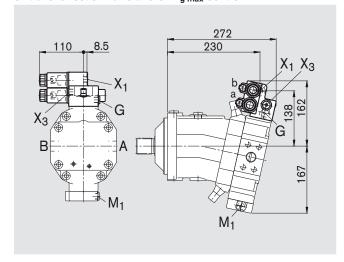
DA1, DA4


Hydraulic control, speed related and hydraulic travel direction valve

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


HA1, HA2 / HA1T, HA2T

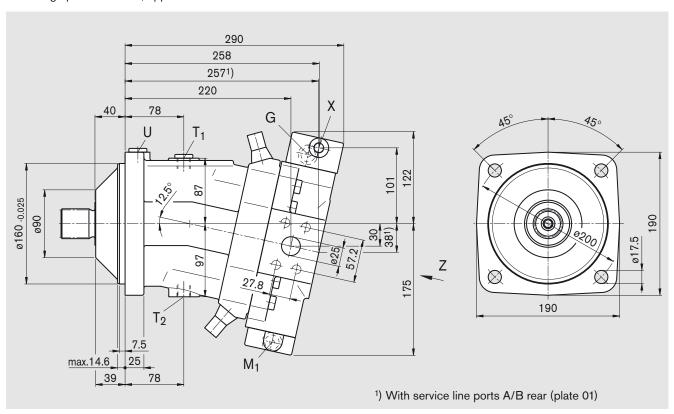
Automatic control, high-pressure related / high-pressure related and hydraulic override


HA1R1, HA2R2

Automatic control, high-pressure related, electric override and electric travel direction valve

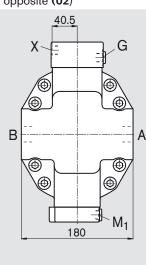
DA2, DA3, DA5, DA6

Hydraulic control, speed related, el. travel direction valve and el. Vg max control

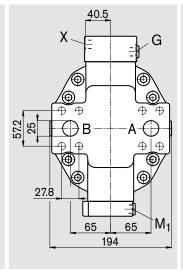


Unit Dimensions, Size 107

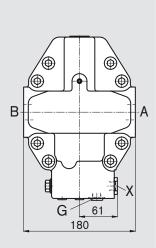
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

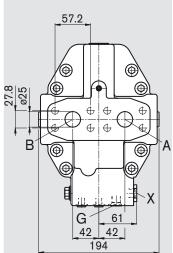

HD1, HD2 Hydraulic control, pilot-pressure related

SAE flange ports A/B side, opposite (02)

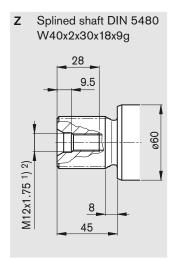


View Z SAE flange ports


A/B side, opposite (02)


SAE flange ports A/B, rear (01)

SAE flange ports A/B side, opposite with HZ3, EZ3 (02)



SAE flange ports A/B, rear with HZ3, EZ3 (01)

Shaft ends

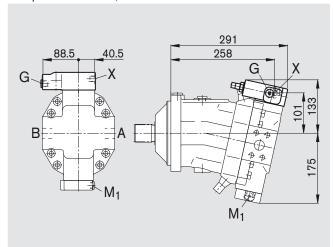
Splined shaft DIN 5480 . W45x2x30x21x9g 36 12 090 M16x2 1)2) 8

Ports

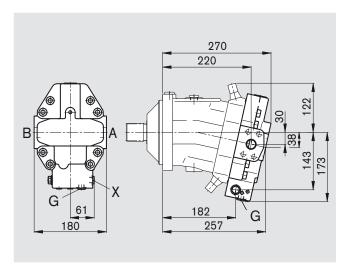
A, B	Service line ports (high-pressure series)	SAE J518	1 in	
	Fixing thread A/B	DIN 13	M12x1.75; 17 deep ²	2)
T_1	Case drain port ³)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
T_2	Case drain port	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
X, X_1, X_3	Pilot-pressure port	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
G	Port for synchronous control of multiple units and for remote control pressure ³)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
G_2	Port for 2nd pressure setting 3)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)
U	Flow port ³)	DIN 3852	M18x1.5; 12 deep	140 Nm ²)
M_1	Gauge port for control pressure 3)	DIN 3852	M14x1.5; 12 deep	80 Nm ²)

¹⁾ center bore according to DIN 332 (thread according to DIN 13)

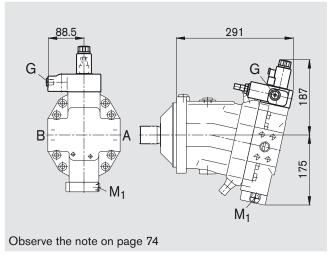
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


²⁾ please observe the general notes for the max. tightening torques on page 76

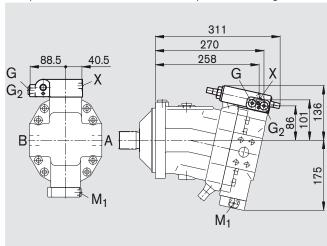
³) plugged

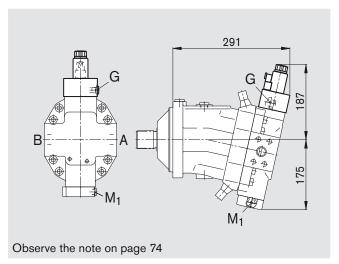

Unit Dimensions, Size 107

HD.D


Hydraulic control, pilot-pressure related, with pressure control, direct

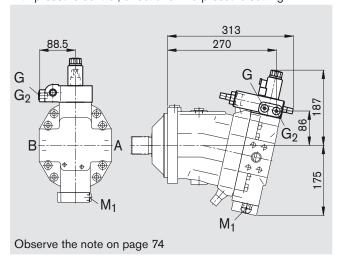
HZ3Hydraulic two-point control


EP.DElectric control (proportional solenoid) with pressure control, direct

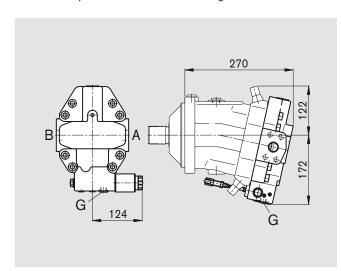

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

HD.E

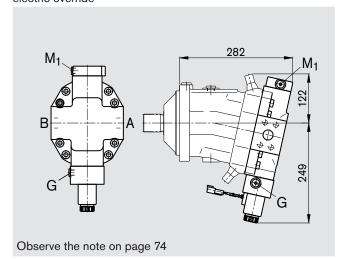
Hydraulic control, pilot-pressure related, with pressure control, direct and 2nd pressure setting



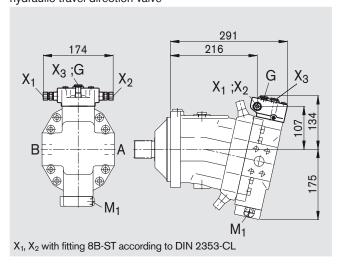
EP1, EP2
Electric control with proportional solenoid


EP.E

Electric control (proportional solenoid) with pressure control, direct and 2nd pressure setting

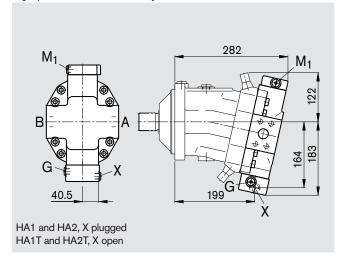

EZ3, EZ4

Electric two-point control witch switching solenoid

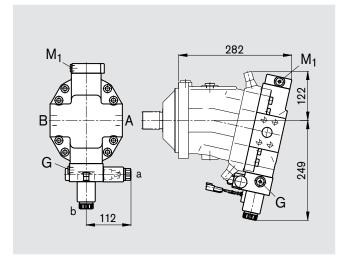

HA1U1, HA2U2

Automatic control, high-pressure related and electric override

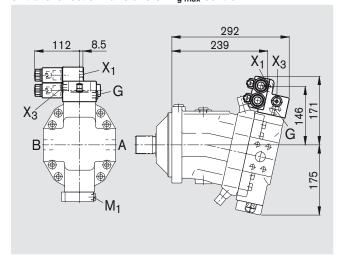
DA1, DA4


Hydraulic control, speed related and hydraulic travel direction valve

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


HA1, HA2 / HA1T, HA2T

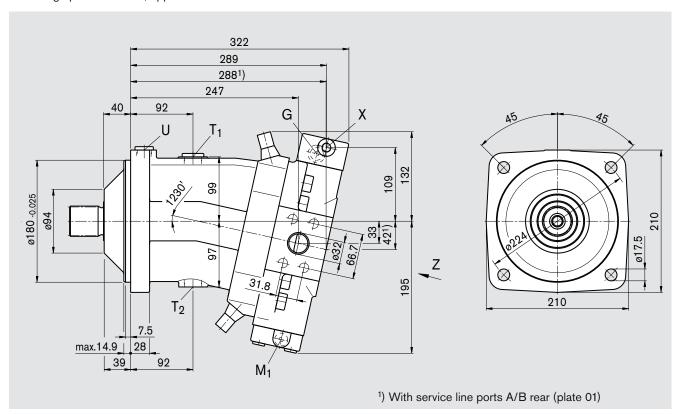
Automatic control, high-pressure related / high-pressure related and hydraulic override


HA1R1, HA2R2

Automatic control, high-pressure related, electric override and electric travel direction valve

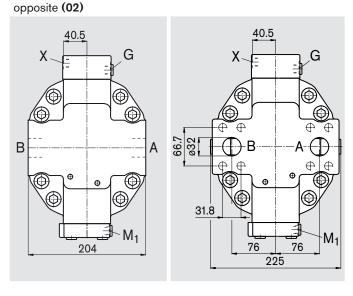
DA2, DA3, DA5, DA6

Hydraulic control, speed related, el. travel direction valve and el. Vg max control



Unit Dimensions, Size 140

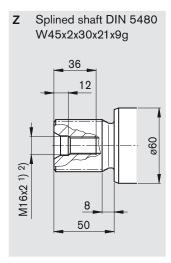
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


HD1, HD2 Hydraulic control, pilot-pressure related HZ1 Hydraulic two-point control

SAE flange ports A/B side, opposite (02)

View Z
SAE flange ports
A/B side,

SAE flange ports A/B rear (01)



RE 91604/03.09 | A6VM **Bosch Rexroth AG 43**/76

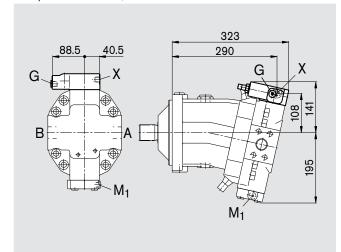
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Unit Dimensions, Size 140

Shaft end

Ports

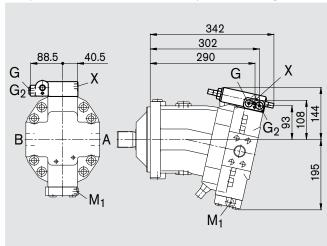
A, B	Service line ports (high-pressure series)	SAE J518	1 1/4 in		
	Fixing thread A/B	DIN 13	M14x2;	19 deep 2	²)
T ₁	Case drain port 3)	DIN 3852	M26x1.5;	16 deep	230 Nm ²)
T_2	Case drain port	DIN 3852	M26x1.5;	16 deep	230 Nm ²)
X, X_1, X_3	Pilot-pressure port	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
G	Port for synchronous control of multiple units and for remote control pressure ³)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
G_2	Port for 2nd pressure setting 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
U	Flow port ³)	DIN 3852	M22x1.5;	14 deep	210 Nm ²)
M_1	Gauge port for control pressure 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
41					

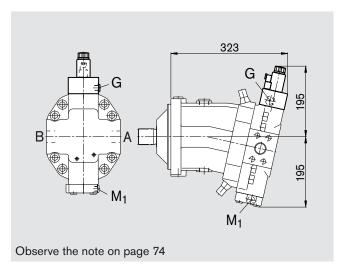

¹⁾ center bore according to DIN 332 (thread according to DIN 13)

²) please observe the general notes for the max. tightening torques on page 76 ³) plugged

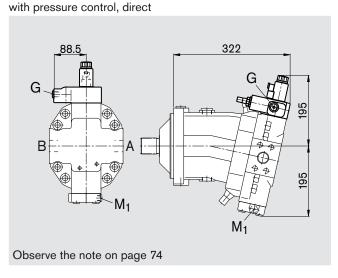
Unit Dimensions, Size 140

HD.D

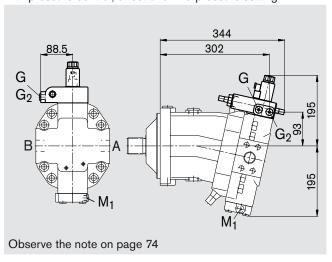

Hydraulic control, pilot-pressure related, with pressure control, direct


Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

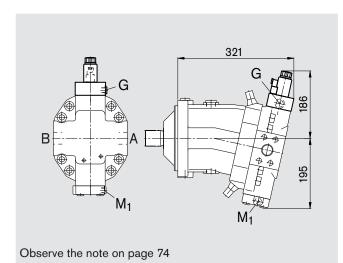
HD.E


Hydraulic control, pilot-pressure related, with pressure control, direct and 2nd pressure setting

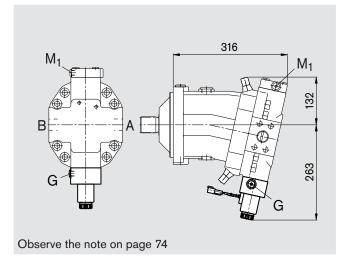
EP1, EP2
Electric control with proportional solenoid



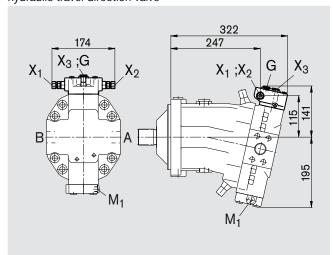
EP.DElectric control (proportional solenoid)


EP.E

Electric control (proportional solenoid) with pressure control, direct and 2nd pressure setting

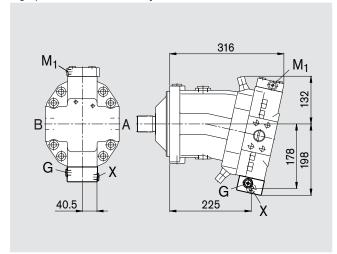

EZ1, EZ2

Electric two-point control with switching solenoid

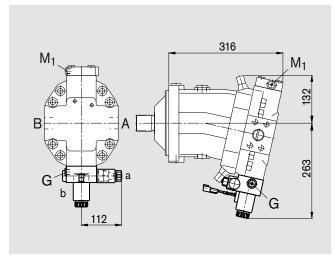

HA1U1, HA2U2

Automatic control, high-pressure related and electric override

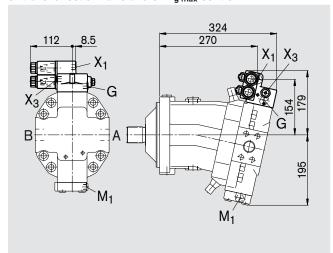
DA1, DA4


Hydraulic control, speed related and hydraulic travel direction valve

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


HA1, HA2 / HA1T, HA2T

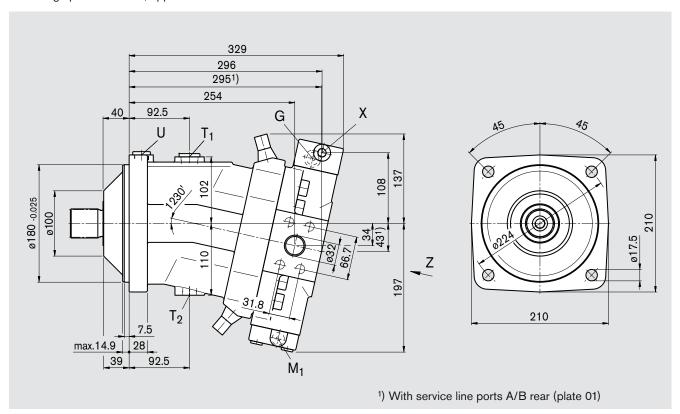
Automatic control, high-pressure related / high-pressure related and hydraulic override


HA1R1, HA2R2

Automatic control, high-pressure related, electric override and electric travel direction valve

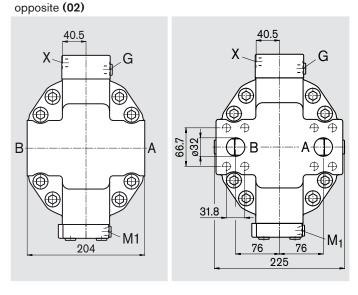
DA2, DA3, DA5, DA6

Hydraulic control, speed related, el. travel direction valve and el. $V_{g\ max}$ control

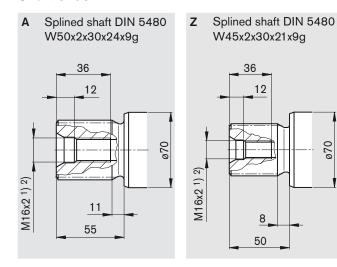


Unit Dimensions, Size 160

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


HD1, HD2 Hydraulic control, pilot-pressure related HZ1 Hydraulic two-point control

SAE flange ports A/B side, opposite (02)


View Z
SAE flange ports
A/B side,

SAE flange ports A/B rear (01)

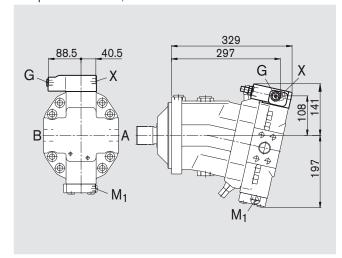
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Shaft ends

Ports

A, B	Service line ports (high-pressure series)	SAE J518	1 1/4 in		
,	Fixing thread A/B	DIN 13	M14x2;	19 deep 2	²)
T ₁	Case drain port 3)	DIN 3852	M26x1.5;	16 deep	230 Nm ²)
T_2	Case drain port	DIN 3852	M26x1.5;	16 deep	230 Nm ²)
X, X_1, X_3	Pilot-pressure port	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
G	Port for synchronous control of multiple units and for remote control pressure ³)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
G_2	Port for 2nd pressure setting 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
U	Flow port ³)	DIN 3852	M22x1.5;	14 deep	230 Nm ²)
M_1	Gauge port for control pressure 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)

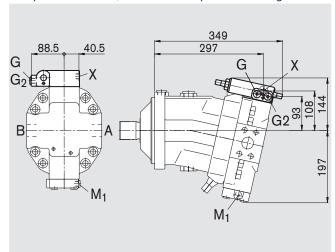
¹⁾ center bore according to DIN 332 (thread according to DIN 13)

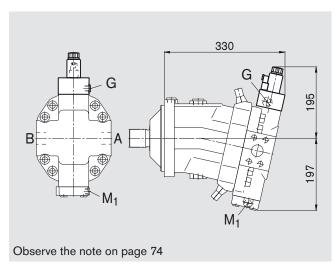

²⁾ please observe the general notes for the max. tightening torques on page 76

³) plugged

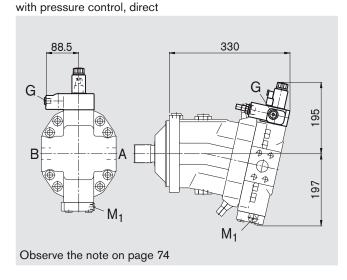
Unit Dimensions, Size 160

HD.D

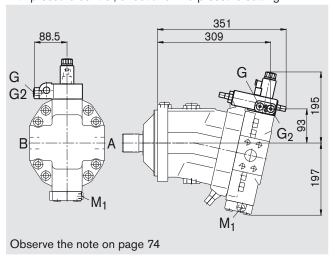

Hydraulic control, pilot-pressure related, with pressure control, direct


Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

HD.E


Hydraulic control, pilot-pressure related, with pressure control, direct and 2nd pressure setting

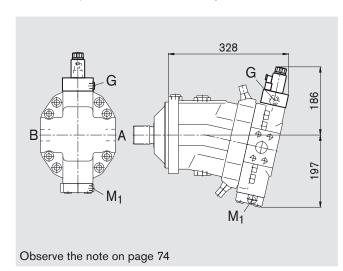
EP1, EP2
Electric control with proportional solenoid



EP.DElectric control (proportional solenoid)

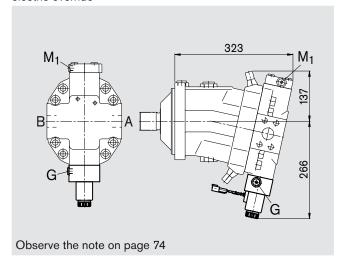
EP.E

Electric control (proportional solenoid) with pressure control, direct and 2nd pressure setting

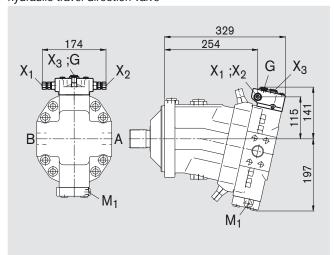


49/76

Unit Dimensions, Size 160

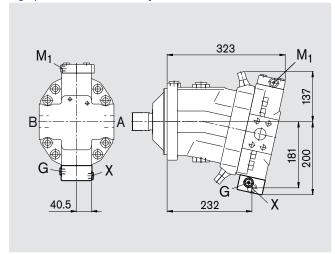

EZ1, EZ2

Electric two-point control with switching solenoid

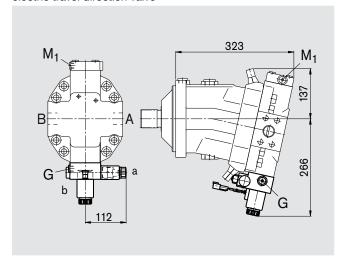

HA1U1, HA2U2

Automatic control, high-pressure related and electric override

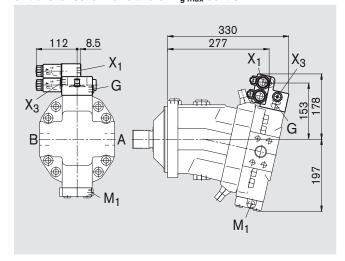
DA1, DA4


Hydraulic control, speed related and hydraulic travel direction valve

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


HA1, HA2 / HA1T, HA2T

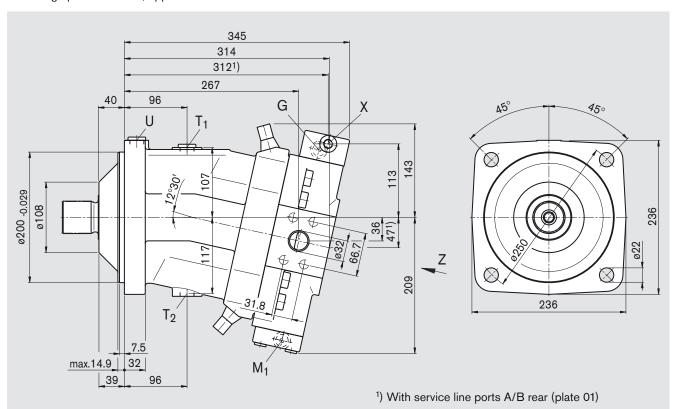
Automatic control, high-pressure related / high-pressure related and hydraulic override


HA1R1, HA2R2

Automatic control, high-pressure related, electric override and electric travel direction valve

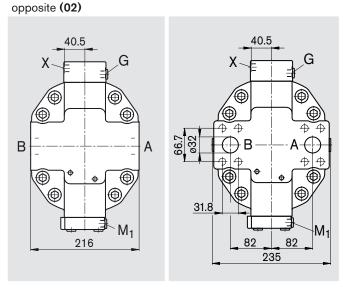
DA2, DA3, DA5, DA6

Hydraulic control, speed related, el. travel direction valve and el. $V_{g\ max}$ control



Unit Dimensions, Size 200

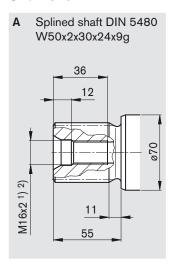
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


HD1, HD2 Hydraulic control, pilot-pressure related HZ1 Hydraulic two-point control

SAE flange ports A/B side, opposite (02)

View Z
SAE flange ports
A/B side,

SAE flange ports A/B rear (01)



Bosch Rexroth AG 51/76

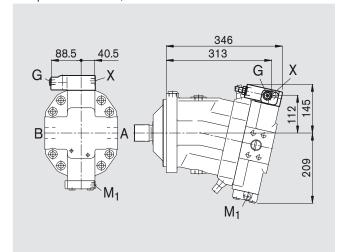
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Unit Dimensions, Size 200

Shaft end

Ports

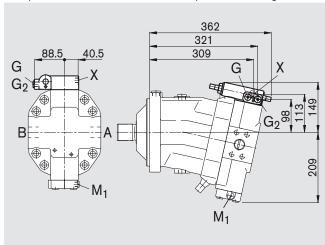
Coming Day and (black and and and a)	CAE IE10	4 4/4 !		
Service line ports (nign-pressure series)	SAE 1918	1 1/4 IN		
Fixing thread A/B	DIN 13	M14x2;	19 deep 2	²)
Case drain port ³)	DIN 3852	M26x1.5;	16 deep	230 Nm ²)
Case drain port	DIN 3852	M26x1.5;	16 deep	230 Nm ²)
Pilot-pressure port	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
Port for synchronous control of multiple units and for remote control pressure ³)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
Port for 2nd pressure setting 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
Flow port ³)	DIN 3852	M22x1.5;	14 deep	210 Nm ²)
Gauge port for control pressure 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
	Case drain port ³) Case drain port Pilot-pressure port Port for synchronous control of multiple units and for remote control pressure ³) Port for 2nd pressure setting ³) Flow port ³)	Fixing thread A/B Case drain port 3) Case drain port Pilot-pressure port Port for synchronous control of multiple units and for remote control pressure 3) Port for 2nd pressure setting 3) Flow port 3) DIN 13 DIN 3852 DIN 3852 DIN 3852	Fixing thread A/B Case drain port 3) DIN 3852 M26x1.5; Case drain port DIN 3852 M26x1.5; Pilot-pressure port DIN 3852 Port for synchronous control of multiple units and for remote control pressure 3) Port for 2nd pressure setting 3) DIN 3852 M14x1.5; Flow port 3) DIN 3852 M14x1.5; DIN 3852 M14x1.5; DIN 3852 M22x1.5;	Fixing thread A/B Case drain port 3) Case drain port DIN 3852 DIN 3852 M26x1.5; 16 deep DIN 3852 Pilot-pressure port Port for synchronous control of multiple units and for remote control pressure 3) Port for 2nd pressure setting 3) DIN 3852 DIN 3852 M14x1.5; 12 deep DIN 3852 M22x1.5; 14 deep


¹⁾ center bore according to DIN 332 (thread according to DIN 13)

²) please observe the general notes for the max. tightening torques on page 76 ³) plugged

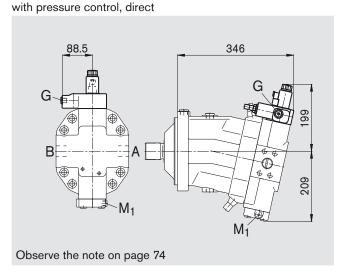
Unit Dimensions, Size 200

HD.D

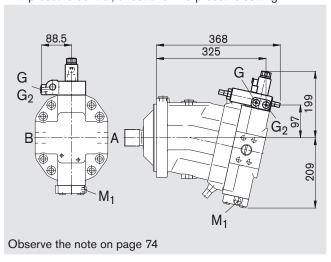

Hydraulic control, pilot-pressure related, with pressure control, direct

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

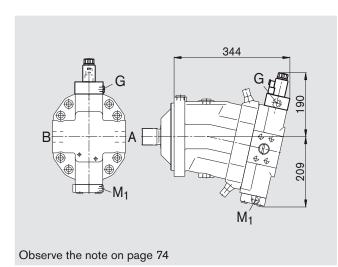
HD.E


Hydraulic control, pilot-pressure related, with pressure control, direct and 2nd pressure setting

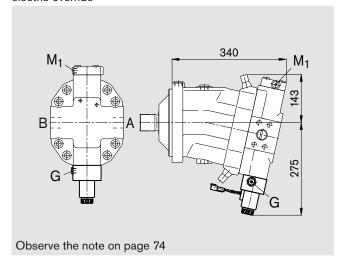
EP1, EP2Electric control with proportional solenoid



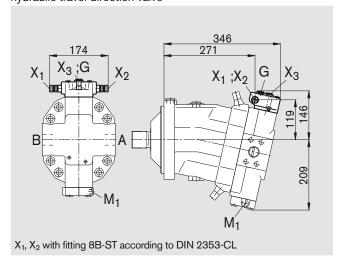
EP.DElectric control (proportional solenoid)


EP.E

Electric control (proportional solenoid) with pressure control, direct and 2nd pressure setting

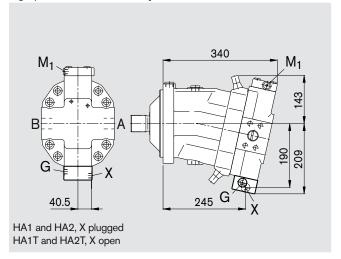

EZ1, EZ2

Electric two-point control with switching solenoid

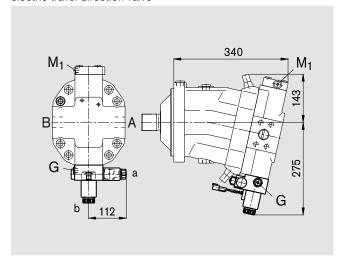

HA1U1, HA2U2

Automatic control, high-pressure related and electric override

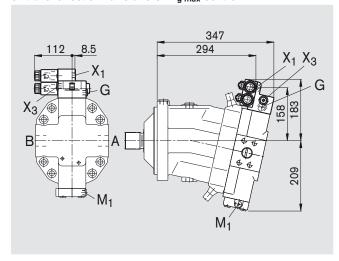
DA1, DA4


Hydraulic control, speed related and hydraulic travel direction valve

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


HA1, HA2 / HA1T, HA2T

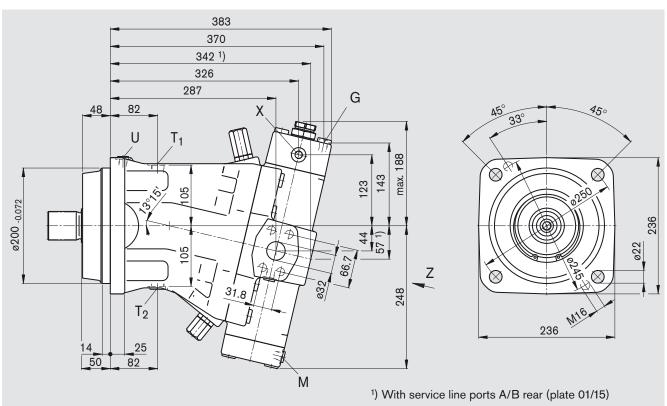
Automatic control, high-pressure related / high-pressure related and hydraulic override


HA1R1, HA2R2

Automatic control, high-pressure related, electric override and electric travel direction valve

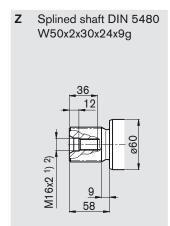
DA2, DA3, DA5, DA6

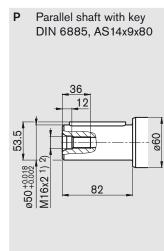
Hydraulic control, speed related, el. travel direction valve and el. V_{g max} control


Unit Dimensions, Size 250

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

HD1, HD2 Hydraulic control, pilot-pressure related


HZ - Hydraulic two-point control


SAE flange ports A/B side, opposite (02)

View Z SAE flange ports SAE flange ports SAE flange ports A/B side, A/B rear (01) A/B side, opposite opposite (02) + A₁/B₁ rear (15) В 4 4 В ⊕в M_{B} M_{B} M_{B} \odot Μ 224 56

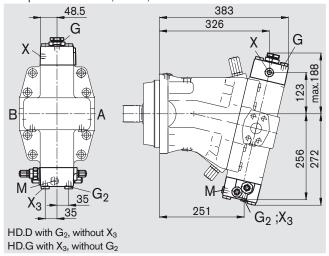
Shaft ends

Ports

A, B	Service line ports (high-pressure series)	SAE J518	1 1/4 in		
A ₁ , B ₁	Additional service line ports with plate 15	SAE J518	1 1/4 in		
	Fixing thread A/B and A ₁ /B ₁	DIN 13	M14x2;	19 deep 2	2)
T ₁	Case drain port	DIN 3852	M22x1.5;	14 deep	210 Nm ²)
T_2	Case drain port 3)	DIN 3852	M22x1.5;	14 deep	210 Nm ²)
Χ	Pilot-pressure port	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
χ_3	Port for remote control valve	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
Р	Port for control oil supply	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
G	Port for synchronous control of multiple	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
	units and for remote control pressure 3)				
G_2	Port for 2nd pressure setting 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
U	Flow port ³)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
M	Gauge port for control pressure 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
M_A, M_B	Gauge port for operating pressure 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
M_{St}	Gauge port for pilot pressure 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
	- · · · ·				

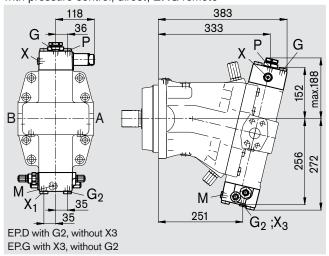
¹⁾ center bore according to DIN 332 (thread according to DIN 13)

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

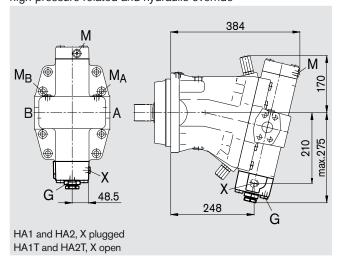

²⁾ please observe the general notes for the max. tightening torques on page 76

³⁾ plugged

Unit Dimensions, Size 250

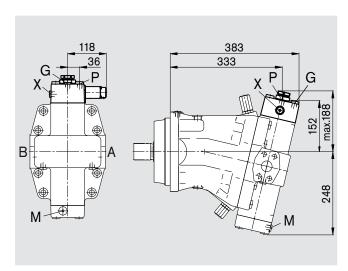

HD.D

Hydraulic control pilot-pressure related, with pressure control, direct; **HD.G** remote

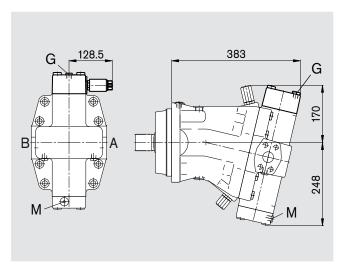

EP.D

Electric control (proportional valve) with pressure control, direct; **EP.G** remote

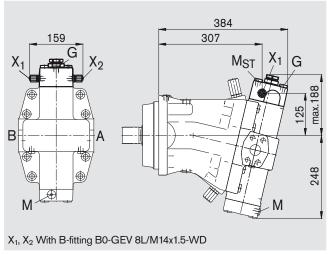
HA1, HA2 / HA1T, HA2T


Automatic control, high-pressure related / high-pressure related and hydraulic override

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


EP1, EP2

Electric control, with proportional valve

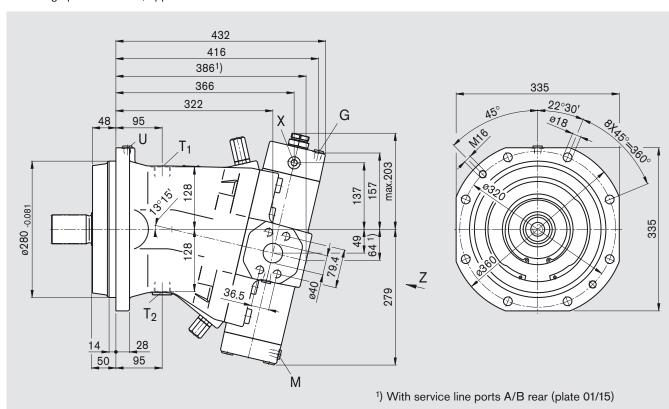

EZ1, EZ2

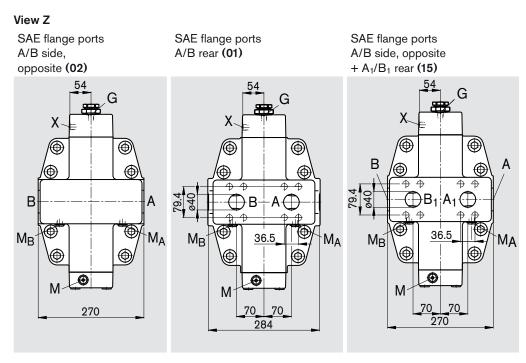
Electric two-point control with switching valve

DA

Hydraulic control, speed related and with hydraulic travel direction valve

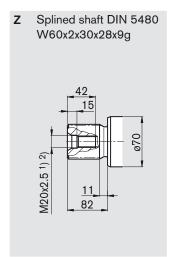
57/76

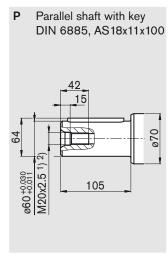

Unit Dimensions, Size 355


Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

HD1, HD2 Hydraulic control, pilot-pressure related

HZ - Hydraulic two-point control


SAE flange ports A/B side, opposite (02)



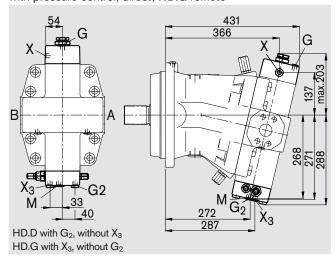
Unit Dimensions, Size 355

Shaft ends

Ports

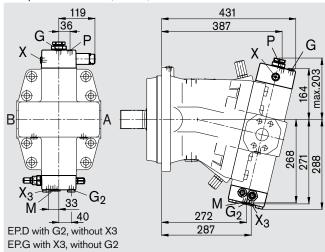
A, B	Service line ports (high-pressure series)	SAE J518	1 1/2 in		
A_1, B_1	Additional service line ports with plate 15	SAE J518	1 1/2 in		
	Fixing thread A/B and A ₁ /B ₁	DIN 13	M16x2;	24 deep	2)
T ₁	Case drain port	DIN 3852	M33x2;	18 deep	540 Nm ²)
T_2	Case drain port ³)	DIN 3852	M33x2;	18 deep	540 Nm ²)
X, X_1, X_2	Pilot-pressure port	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
X_3	Port for remote control valve	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
Р	Port for control oil supply	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
G	Port for synchronous control of multiple	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
	units and for remote control pressure 3)				
G_2	Port for 2nd pressure setting 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
U	Flow port ³)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
M	Gauge port for control pressure 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
MA, M_B	Gauge port for operating pressure 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
M_{St}	Gauge port for pilot pressure 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
				•	

¹⁾ center bore according to DIN 332 (thread according to DIN 13)

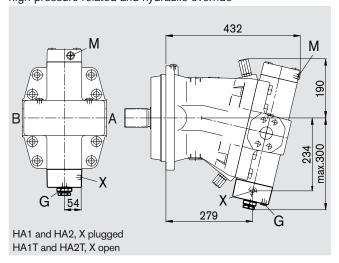

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

²⁾ please observe the general notes for the max. tightening torques on page 76

³⁾ plugged

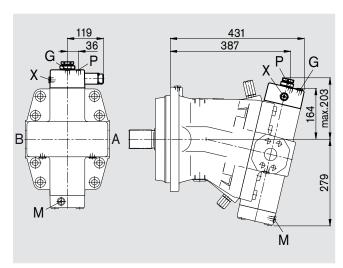

HD.D

Hydraulic control pilot-pressure related, with pressure control, direct; **HD.G** remote

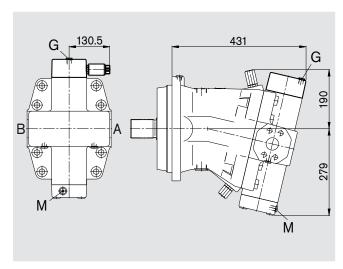

EP.D

Electric control (proportional valve), with pressure control, direct; **EP.G** remote

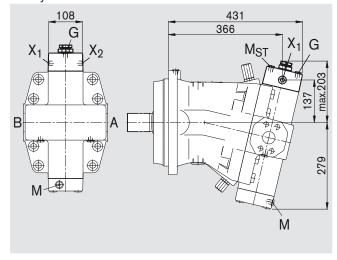
HA1, HA2 / HA1T, HA2T


Automatic control, high-pressure related / high-pressure related and hydraulic override

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


EP1, EP2

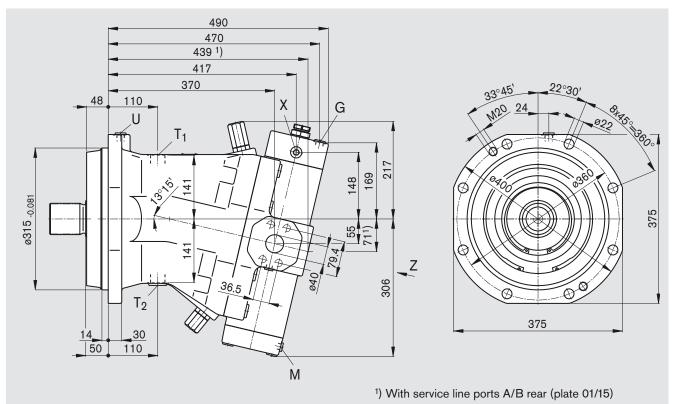
Electric control, with proportional valve


EZ1, EZ2

Electric two-point control with switching valve

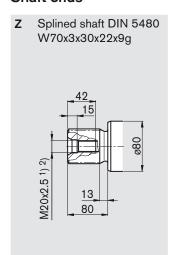
DA

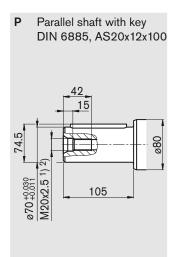
Hydraulic control, speed related and with hydraulic travel direction valve


Unit Dimensions, Size 500

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

HD1, HD2 Hydraulic control, pilot-pressure related


HZ - Hydraulic two-point control


SAE flange ports A/B side, opposite (02)

View Z SAE flange ports SAE flange ports SAE flange ports A/B side, A/B rear (01) A/B side, opposite opposite (02) + A₁/B₁ rear (15) **M**A ◍ ◍ В ⊕B ⊕B₁ В M_{B} M_{B} 36.5 M_{B} • 働 298 78 298

Shaft ends

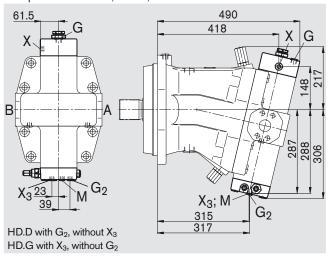
Ports

A, B	Service line ports (high-pressure series)	SAE J518	1 1/2 in		
A_1, B_1	Additional service line ports with plate 15	SAE J518	1 1/2 in		
	Fixing thread A/B and A ₁ /B ₁	DIN 13	M16x2;	24 deep	²)
T ₁	Case drain port	DIN 3852	M33x2;	18 deep	540 Nm ²)
T_2	Case drain port 3)	DIN 3852	M33x2;	18 deep	540 Nm ²)
X, X_1, X_2	Pilot-pressure port	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
X_3	Port for remote control valve	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
Р	Port for control oil supply	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
G	Port for synchronous control of multiple	DIN 3852	M18x1.5;	12 deep	140 Nm ²)
	units and for remote control pressure 3)				
G_2	Port for 2nd pressure setting 3)	DIN 3852	M18x1.5;	12 deep	140 Nm ²)
U	Flow port ³)	DIN 3852	M18x1.5;	12 deep	140 Nm ²)
M	Gauge port for control pressure 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
M_A, M_B	Gauge port for operating pressure 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
M_{St}	Gauge port for pilot pressure 3)	DIN 3852	M14x1.5;	12 deep	80 Nm ²)
41					

¹⁾ center bore according to DIN 332 (thread according to DIN 13)

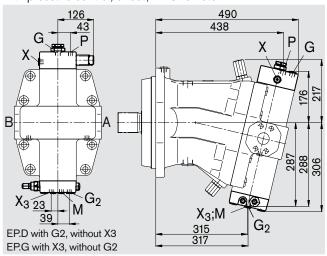
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

²⁾ please observe the general notes for the max. tightening torques on page 76

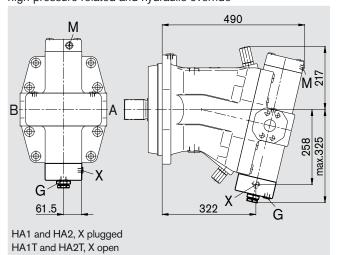

³⁾ plugged

Unit Dimensions, Size 500

,

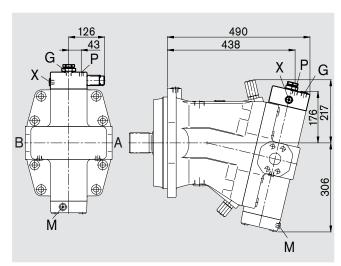

HD.D

Hydraulic control pilot-pressure related, with pressure control, direct; **HD.G** remote

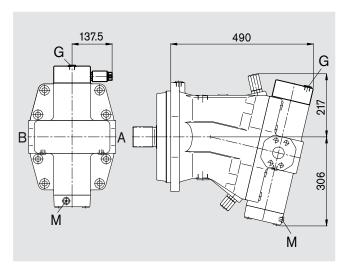

EP.D

Electric control (proportional valve), with pressure control, direct; **EP.G** remote

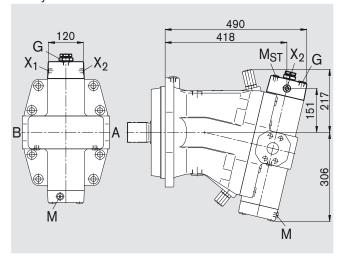
HA1, HA2 / HA1T, HA2T


Automatic control, high-pressure related / high-pressure related and hydraulic override

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


EP1, EP2

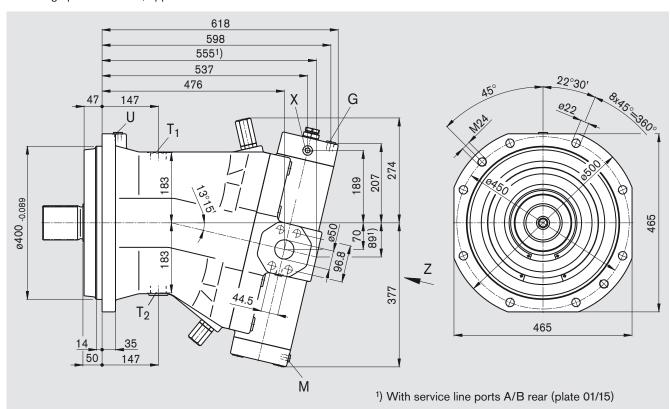
Electric control, with proportional valve


EZ1, EZ2

Electric two-point control with switching valve

DA

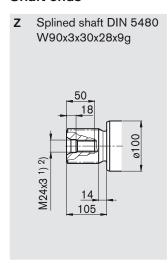
Hydraulic control, speed related and with hydraulic travel direction valve

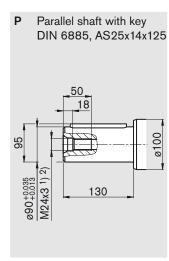

63/76

Unit Dimensions, Size 1000

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

HD1, HD2 Hydraulic control, pilot-pressure related **HZ** Hydraulic two-point control


SAE flange ports A/B side, opposite (02)



View Z SAE flange ports SAE flange ports SAE flange ports A/B side, A/B rear (01) A/B side, opposite opposite (02) + A₁/B₁ rear (15) ◍ **(P)** ◍ ◍ \oplus В ⊕B1⊦A1⊕ В ⊕в 1 M_{B} Μg MA M_{B} 1 ◍ ◍ **(** ₩ \overline{ullet} 98 98 98 370 370 384

Unit Dimensions, Size 1000

Shaft ends

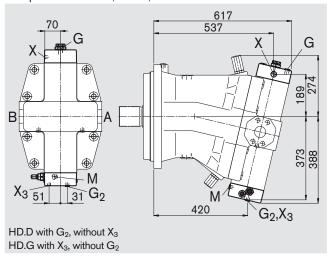
Ports

A, B	Service line ports (high-pressure series)	SAE J518	2 in
A ₁ , B ₁	Additional service line ports with plate 15	SAE J518	2 in
	Fixing thread A/B and A ₁ /B ₁	DIN 13	M20x2.5; 24 deep ²)
T ₁	Case drain port	DIN 3852	M42x2; 20 deep 720 Nm ²)
T_2	Case drain port 3)	DIN 3852	M42x2; 20 deep 720 Nm ²)
Χ	Pilot-pressure port	DIN 3852	M14x1.5; 12 deep 80 Nm ²)
χ_3	Port for remote control valve	DIN 3852	M14x1.5; 12 deep 80 Nm ²)
Р	Port for control oil supply	DIN 3852	M14x1.5; 12 deep 80 Nm ²)
G	Port for synchronous control of multiple	DIN 3852	M18x1.5; 12 deep 140 Nm ²)
	units and for remote control pressure 3)		
G_2	Port for 2nd pressure setting 3)	DIN 3852	M18x1.5; 12 deep 140 Nm ²)
U	Flow port ³)	DIN 3852	M18x1.5; 12 deep 140 Nm ²)
M	Gauge port for control pressure 3)	DIN 3852	M14x1.5; 12 deep 80 Nm ²)
M_A, M_B	Gauge port for operating pressure 3)	DIN 3852	M14x1.5; 12 deep 80 Nm ²)
M_{St}	Gauge port for pilot pressure 3)	DIN 3852	M14x1.5; 12 deep 80 Nm ²)

¹⁾ center bore according to DIN 332 (thread according to DIN 13)

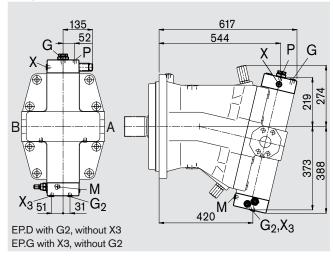
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

²) please observe the general notes for the max. tightening torques on page 76

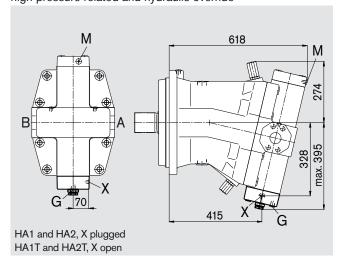

³⁾ plugged

65/76

Unit Dimensions, Size 1000

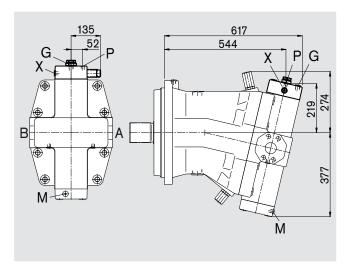

HD.D

Hydraulic control pilot-pressure related, with pressure control, direct; **HD.G** remote

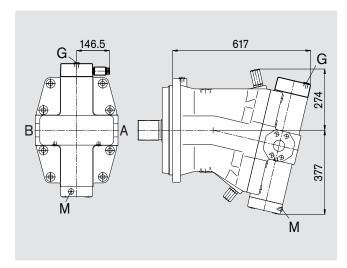

EP.D

Electric control (proportional valve), with pressure control, direct; **EP.G** remote

HA1, HA2 / HA1T, HA2T


Automatic control, high-pressure related / high-pressure related and hydraulic override

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


EP1, EP2

Electric control, with proportional valve

EZ1, EZ2

Electric two-point control with switching valve

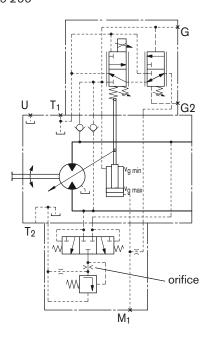
Flush and Boost Pressure Valve

The flush and boost pressure valve is used to remove heat from the closed circuit and to ensure that a minimum boost pressure is present (opening pressure 16 bar, fixed; note when setting primary valve). A side effect is flushing of the case.

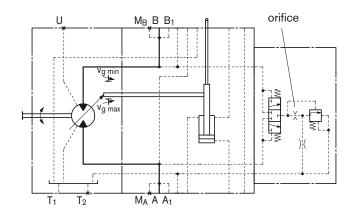
Warm hydraulic fluid is removed from the respective low pressure side into the motor case. This is then fed into the tank, together with the case drain fluid. The hydraulic fluid drawn out of the closed circuit in this way must be replaced by cooled hydraulic fluid that is supplied by the boost pump.

In the open circuit system, the flush and boost pressure valve is used solely to flush the case from the return line.

The valve is mounted to the variable motor or integrated into the control unit (depending on the type of control and the size).


Orifices can be used to adjust the flushing volumes as required.

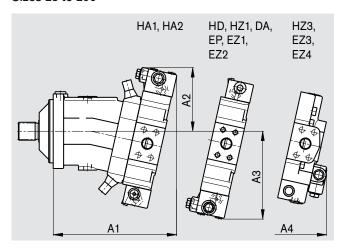
Standard flushing volumes (at low pressure $\Delta p_{LP} = 25$ bar)


Size	Flushing volume	Mat. no. of the orifice
28, 55	3.5 l/min	R909651766
80	5 l/min	R909419695
107	8 l/min	R909419696
140, 160, 200	10 l/min	R909419697
250	10 l/min	R909419697
355, 500, 1000	16 l/min	R910803019

For sizes 28 to 200, orifices for flushing volumes of 3.5 - 10 l/min can be supplied. In the case of non-standard flushing volumes, please specify the desired flushing volume when ordering. The flushing volume without orifice is approx. 12 to 14 l at low pressure $\Delta p_{LP} = 25$ bar.

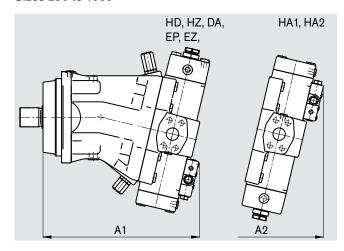
Circuit diagram Sizes 28 to 200

Circuit diagram
Sizes 250 to 1000



Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Flush and Boost Pressure Valve


Dimensions

Sizes 28 to 200

Size	A1	A2	А3	A4
28	214	125	161	_
55	243	133	176	236
80	273	142	193	254
107	288	144	200	269
140	321	154	218	_
160	328	154	220	-
200	345	160	231	_

Sizes 250 to 1000

Size	A1	A2
250	357	402
355	397	446
500	440	504
1000	552	629

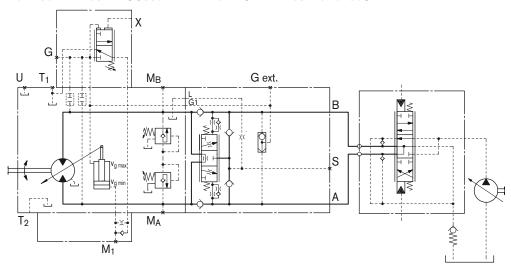
BVD Counterbalance Valve (Sizes 55...160)

Function

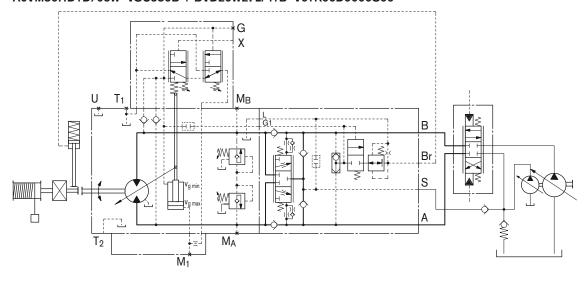
Driving/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open controls. Cavitation occurs if the motor speed is greater than it should be for the given flow during braking, downhill travel or decrease in motor load.

Please note

- The BVD counterbalance valve must be specified explicitly in the order. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A6VM80HA1T/63W-VSC380A + BVD20F27S/41B-V03K16D0400S12
- For safety reasons, winch drives are forbidden with start of control at $V_{g\ min}$ (e.g. HA)!
- The counterbalance valve does not replace the mechanical service brake and parking brake.
- Note the detailed information about the BVD counterbalance valve contained in RE 95522


Driving counterbalance valve BVD...F Example of application

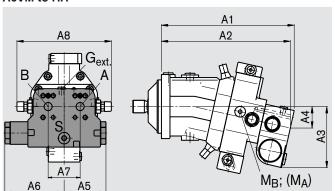
- Travel drive on wheeled excavators


Winch counterbalance valve BVD...W Typical applications

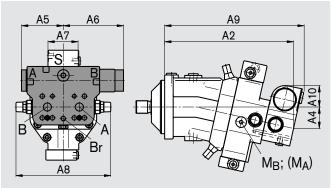
- Winch drives in cranes
- Track drive in excavator crawlers

Example control diagram for travel drive on wheeled excavators A6VM80HA1T/63W-VSC380A + BVD20F27S/41B-V03K16D0400S12

Example control diagram for winch gears in cranes A6VM80HD1D/63W-VSC380B + BVD20W27L/41B-V01K00D0600S00



BVD Counterbalance Valve (Sizes 55...160)


Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Dimensions

A6VM to HA

A6VM to HD and EP 1)

A6VM	Counter bal- ance valve	Ports 2)	Ports ²)				
SizePlate	Туре	A, B	s	G _{ext.} (version S)	G _{ext.} (version L)	Br (version L)	M _A , M _B Gauge port (plugged)
5538	BVD2017	3/4 in	M22x1.5; 14 deep	M12x1.5; 12.5 deep	M14x1.5; 8 deep	M12x1.5; 12.5 deep	M18x1.5; 12 deep
8038	BVD2027	1 in	M22x1.5; 14 deep	M12x1.5; 12.5 deep	M14x1.5; 8 deep	M12x1.5; 12.5 deep	M18x1.5; 12 deep
10737	BVD2028	1 in	M22x1.5; 14 deep	M12x1.5; 12.5 deep	M14x1.5; 8 deep	M12x1.5; 12.5 deep	M18x1.5; 12 deep
10738	BVD2538	1 1/4 in	M27x2; 16 deep	M12x1.5; 12.5 deep	M14x1.5; 8 deep	M12x1.5; 12 deep	M18x1.5; 12 deep
14038	BVD2538	1 1/4 in	M27x2; 16 deep	M12x1.5; 12.5 deep	M14x1.5; 8 deep	M12x1.5; 12 deep	M18x1.5; 12 deep
16038	BVD2538	1 1/4 in	M27x2; 16 deep	M12x1.5; 12.5 deep	M14x1.5; 8 deep	M12x1.5; 12 deep	M18x1.5; 12 deep
25008	on request						

A6VM	Dimer	nsions								
SizePlate	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10
5538	311	302	143	50	98	139	75	222	326	50
8038	340	331	148	55	98	139	75	222	355	46
10737	362	353	152	59	98	139	84	234	377	41
10738	380	370	165	63	120.5	175	84	238	395	56
14038	411	401	168	67	120.5	175	84	238	446	53
16038	417	407	170	68	120.5	175	84	238	432	51
25008	on req	uest								

¹⁾ In the installation version for the HD and EP controls, the molded connection designations on the brake valve do not correspond with the connection designation of the A6VM. The designation of the connections on the engine installation drawing is binding!

2) Ports on the counterbalance valve

A, B Service line ports

S Boosting (plugged)

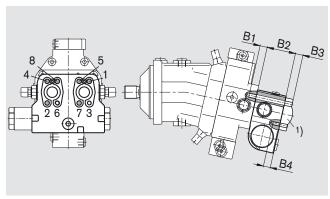
 $G_{\text{ext.}}$ Brake release, high pressure, plugged

Br Brake release, reduced high pressure, open

Version S "Port for brake release with high pressure"

Version L "Port for brake release with reduced high pressure"

BVD Counterbalance Valve (Sizes 55...160)


Attaching the counterbalance valve

When delivered, the counterbalance valve is attached to the motor using 2 tacking screws. Do not remove the tacking screws when connecting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be attached to the motor port plate using the provided tacking screws. In both cases, the final attachment of the counterbalance valve to the motor is by the connectio of the service lines, e.g. using SAE 4-bolt flanges. A total of 6 screws with thread lengths B1+B2+B3 and 2 screws with thread lengths B3+B4 are required.

When tightening the screws, it is imperative that the sequence 1 to 8 (as shown in the adjacent diagram) be adhered to and carried out in two phases.

In the first phase the screws should be tightened to 50% of their tightening torque before being tightened to maximum tightening torque in the second phase (see table below).

Thread	Property class	Tightening torque in Nm
M10	10.9	75
M12	10.9	130
M14	10.9	205

1) Flange, e.g. SAE flange

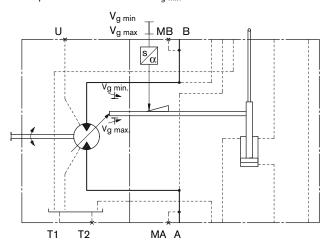
SizePlate	5538	8038 10737	107, 140, 16038
B1 ²)	M10x1.5 17 deep	M12x1.75 15 deep	M14x2 19 deep
B2	68	68	85
B3	Customer spec	cific	
B4	M10x1.5 15 deep	M12x1.75 16 deep	M14x2 19 deep

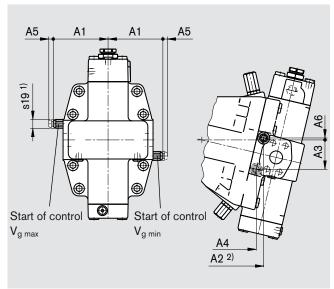
²⁾ Minimum required reach 1 x DIA. thread

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Swivel Angle Indicator (Sizes 250...1000)

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


Optical swivel angle indicator (V)


The swivel position is indicated by a pin on the side of the port plate. The length of the protruding pin is dependent on the position of the lens plate.

If the pin is flush with the port plate, the motor is positioned at the start of control. At max. swivel, the pin length is 8 mm (visible after removing the cap nut).

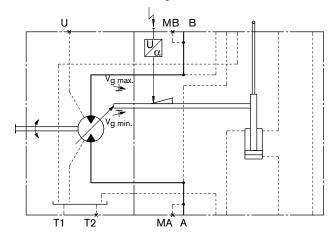
Sizes 250 to 1000

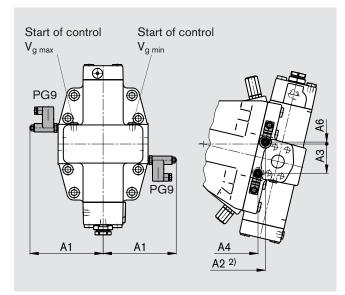
Example: Start of control at V_{g min}

Size	A1	$A2^{2)}$	А3	A4	A5 ³⁾	A6	
250	136.5	256	73	238	11	5	
355	159.5	288	84	266	11	8	
500	172.5	331	89	309	11	3	
1000	208.5	430	114	402	11	3	

- 1) Width across flats
- 2) Distance to mounting flange
- 3) Clearance required for removing the cap nut

Electric swivel angle indicator (E)


The motor position is measured by an inductive pos. transducer. It converts the stroke of the control device to an electric signal.


This signal can be used to pass the swivel position to an electric controller.

Inductive pos. transducer type IW9-03-01
Type of protection according to DIN/EN 60529: IP65

Sizes 250 to 1000

Example: Start of control at V_{g max}

Size	A1	A2 ²⁾	А3	A4	A6	
250	182	256	73	238	5	
355	205	288	84	266	8	
500	218	331	89	309	3	
1000	254	430	114	402	3	

²) Distance to mounting flange

Speed Measurement (Sizes 28...500)

The A6VM...D and A6VM...F ("prepared for speed measurement", i.e. without sensor) versions have teeth on the rotary group. The rotating, toothed rotary group generates a signal in proportion to the speed. The signal is picked up by a sensor and can be forwarded for evaluation.

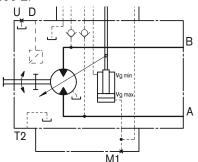
Note

 For sizes 28 to 200 with speed measurement, only port T₂ may be used to drain the case drain.

Version "D" (size 28...200)

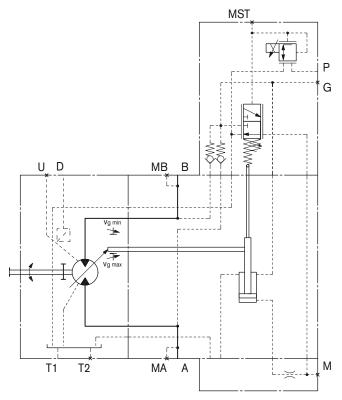
Suitable for mounting the inductive speed sensor ID (see RE 95130). The ID sensor is screwed into the upper case drain port T₁. The spacer ring (sizes 28 to 107) or threaded-reducing connector stud (sizes 140 to 200) required for the inductive speed sensor ID is included in the supply volume of the sensor (only when ordering, speed sensor with installation parts).

Version "F" (size 55...500)

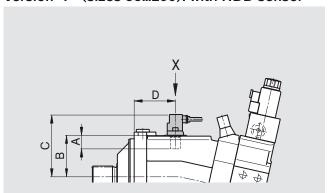

Suitable for mounting the HDD Hall-effect speed sensor (see RE 95135). With sizes 55 to 200, the HDD sensor is flanged onto the upper case drain port T_1 ; with size 250 to 500, it is flanged onto the port provided for this purpose with two fixing screws. In the standard version, the port is plugged with a pressure-resistant flange cover.

We recommend ordering the A6VM variable motor complete with mounted sensor. Please specify the ordering code for the sensor separately.

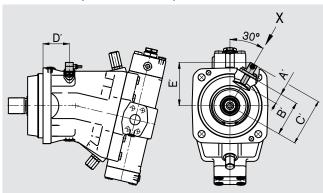
Before finalizing your design, please request a binding installation drawing. Dimensions in mm.


Circuit diagram

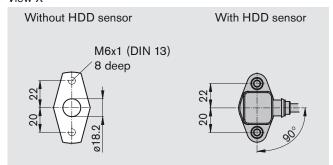
A6VM 28...200 EP


Circuit diagram

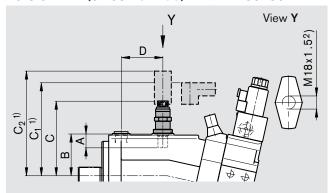
A6VM 250...500 EP



Speed Measurement (Sizes 28...500)


Version "F" (sizes 55...200): with HDD sensor

Version "F" (size 250...500): with HDD.L32 sensor



View X

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

Version "D" (sizes 28...200): with ID sensor

- Clearance required for attaching/detaching the mating connector: min 13 mm
- 2) Tightening torque, max.: 50 Nm (ID sensor)

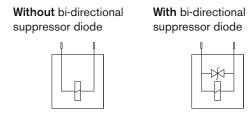
		Size	250	355	500
			HD	D.L32	./20
Numb	er o	f teeth	78	90	99
HDD	Α'	Insertion depth (tolerance \pm 0.1)	32.5	32.5	32.5
	B′	Contact surface	110.5	122.5	132.5
	C		149	161	171
	D′		82	93	113
	E'		135	145	154

		Size	28	55	80	107	140	160	200	
	Sensor selection			IDR 18/20 - L250			IDF	IDR 18/20 - L400		
				HDD.L16/20						
Number of teeth			40	54	58	67	72	75	80	
HDD	Α	Insertion depth (tolerance \pm 0,1)		16	16	16	16	16	16	
	В	Contact surface		72.6	76.6	85.6	90.6	93.6	98.6	
	С			111	115	124	129	132	137	
	D			67	76	78	92	92.5	96	
ID	Α	Insertion depth (tolerance \pm 0,1)	17.5	17.5	17.5	17.5	24.5	24.5	24.5	
	В	Contact surface	60	74	78	87	99	102	107	
	С	without mating connector	120	134	138	147	157	160	165	
	C1	with 90° mating connector	175	189	193	202	212	215	220	
	C2	with 180° mating connector	153.5	167.5	171.5	180.5	190.5	193.5	198.5	
	D		58	67	76	78	92	92.5	96	

Connectors for Solenoids (for EP, EZ, HA.U, HA.R, DA only)

Before finalizing your design, please request a binding installation drawing. Dimensions in mm.

DEUTSCH DT04-2P-EP04, 2-pin

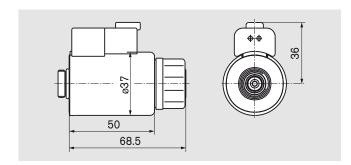

Molded, without bi-directional suppressor diode
(for EP, EZ, DA) _____P

Molded, with bi-directional suppressor diode
(for switching solenoid for the EZ1/2, DA control units) ____Q

Type of protection according to DIN/EN 60529: IP67 and IP69K

The protection circuit with a bi-directional suppressor diode is necessary for limiting overvoltages. Overvoltages are generated by disconnecting the current using switches, relay contacts or by unplugging an energized mating connector.

Circuit symbol



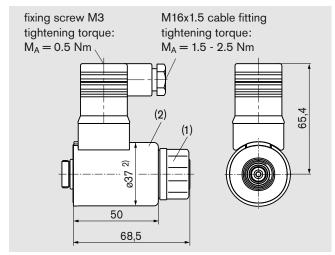
Mating connector

DEUTSCH DT06-2S-EP04 Rexroth Mat. No. R902601804

Consisting of:	DT-Designation
- 1 case	DT06-2S-EP04
- 1 wedge	W2S
- 2 sockets	0462-201-16141

The mating connector is not included in supply. This can be supplied by Rexroth on request.

HIRSCHMANN DIN EN 175 301-803-A/ISO 4400


(not for new projects with sizes 28...200)

Without bi-directional suppressor diode (for EP, EZ, HA.U, HA.R, DA) _______H

Type of protection according to DIN/EN 60529: IP65

The seal ring in the cable fitting is suitable for line diameters from 4.5 mm to 10 mm.

The HIRSCHMANN connector is included in the supply for the motor.

²) Solenoid with dia. 45 for following controls: HA.U, HA.R (for elec. override), EZ3 and EZ4.

Note for round solenoids:

The position of the connector can be changed by turning the solenoid body.

The following procedure is to be observed:

- 1. Loosen the fixing nut (1)
- 2. Turn the solenoid body (2) to the desired position
- Tighten the fixing nut Tightening torque of the fixing nut: 5⁺¹ Nm (width across flats WAF26, 12-sided DIN 3124)

We reserve the right to change the position of the solenoid connector from that depicted in the brochure or drawing during assembly of the solenoid.

75/76

Installation Instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This is also to be observed following a relatively long standstill as the system may empty via the hydraulic lines.

The motor case drain connection (i.e.- T_1/T_2) must be directed to the tank via the highest case drain port.

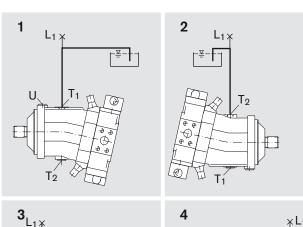
In all operating states, the case drain line must flow into the tank below the minimum fluid level.

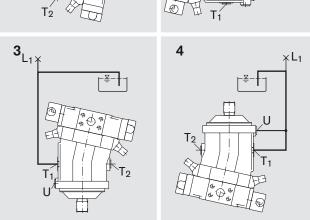
Installation position

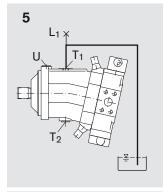
See examples below. Additional installation positions are available upon request.

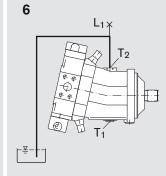
Below-tank installation (standard)

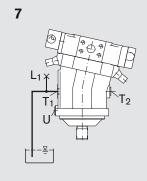
Motor below the minimum fluid level of the tank.

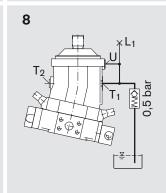

Recommended installation positions: 1 and 2.


Above-tank installation


Motor above the min. fluid level of the tank


- Note: Installation position 8 (shaft up)


In this installation position, if the case interior is only partially drained, lubrication of the bearings will no longer be adequate. A check valve (opening pressure 0.5 bar) in the case drain line can prevent the system emptying through the case drain line.



Installation position	Air bleeding	Filling
1	_	T ₁ (L ₁)
2	_	T ₂ (L ₁)
3	_	T ₁ (L ₁)
4	U	T ₁ (L ₁)

Installation position	Air bleeding	Filling
5	_	T ₁ (L ₁)
6	-	T ₂ (L ₁)
7	_	T ₁ (L ₁)
8	U	T ₁ (L ₁)

General Instructions

- The A6VM motor is designed to be used in open and closed circuits.
- Project planning, assembly, and commissioning of the motor require the involvement of qualified personnel.
- The service line ports and function ports are only designed to mounting hydraulic lines.
- During and shortly after operation, there is a risk of burns on the motor and especially on the solenoids. Take suitable safety
 precautions, e.g. wear protective clothing
- There may be shifts in the characteristic depending on the operating state of the motor (operating pressure, fluid temperature).
- Tightening torques:
 - The tightening torques specified in this data sheet are maximum values and must not be exceeded (maximum values for screw thread).
 - Manufacturer's instruction for the max. permissible tightening torques of the used armatures must be observed!
 - For DIN 13 fixing screws, we recommend checking the tightening torque individually according to VDI 2230 Edition 2003.
- The data and information contained herein must be adhered to.

Bosch Rexroth AG
Hydraulics
Axial Piston Units
Glockeraustraße 2
89275 Elchingen, Germany
Telephone +49 (0) 73 08 82-0
Fax +49 (0) 73 08 72 74

An den Kelterwiesen 14 72160 Horb, Germany Telephone +49 (0) 74 51 92-0 Fax +49 (0) 74 51 82 21

info.brm-ak@boschrexroth.de www.boschrexroth.com/axial-piston-motors © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.